Preview

Geodynamics & Tectonophysics

Advanced search

THERMAL HISTORY OF THE GULI PLUTON (NORTH OF THE SIBERIAN PLATFORM) ACCORDING TO APATITE FISSION-TRACK DATING AND COMPUTER MODELING

https://doi.org/10.5800/GT-2020-11-1-0464

Abstract

We present the first results of fission-track dating of apatite monofractions from two rock samples taken from the Southern carbonatite massif of the world’s largest alkaline ultrabasic Guli pluton (~250 Ma), located within the Maymecha-Kotuy region of the Siberain Traps. Based on the apatite fission-track data and computer modeling, we propose two alternative model of the Guli pluton's tectonothermal history. The models suggest (1) rapid post-magmatic cooling of the studied rocks in hypabyssal conditions at depth about 1.5 km, or (2) their burial under a 2-3 km thick volcano-sedimentary cover and reheating above 110°C, followed by uplift and exhumation ca. 218 Ma.

About the Authors

M. S. Myshenkova
M.V. Lomonosov Moscow State University
Russian Federation

MARIA S. MYSHENKOVA Researcher

1 Leninskie Gory, GSP-1, Moscow 119991, Russia



V. A. Zaitsev
V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS
Russian Federation

VICTOR A. ZAITSEV Candidate of Geology and Mineralogy, Senior Researcher

19 Kosygina St, Moscow 119991, Russia



S. Thomson
University of Arizona
United States

STUART N. THOMSON PhD, Research Scientist, Department of Geosciences

1040 E 4th St, Tucson (AZ) 85721, United States



A. V. Latyshev
M.V. Lomonosov Moscow State University; O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

ANTON V. LATYSHEV Candidate of Geology and Mineralogy, Assistant Professor

1 Leninskie Gory, GSP-1, Moscow, 119991, Russia;
10-1 Bolshaya Gruzinskaya St, Moscow 123242, Russia



V. S. Zakharov
M.V. Lomonosov Moscow State University
Russian Federation

VLADIMIR S. ZAKHAROV Doctor of Geology and Mineralogy, Professor

1 Leninskie Gory, GSP-1, Moscow 119991, Russia



T. E. Bagdasaryan
M.V. Lomonosov Moscow State University
Russian Federation

TATYANA E. BAGDASARYAN Graduate student

1 Leninskie Gory, GSP-1, Moscow 119991, Russia



R. V. Veselovsky
M.V. Lomonosov Moscow State University; O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

ROMAN V. VESELOVSKIY Doctor of Geology and Mineralogy, Professor

1 Leninskie Gory, GSP-1, Moscow, 119991, Russia;
10-1 Bolshaya Gruzinskaya St, Moscow 123242, Russia



References

1. Ahrens T.J. (Ed.), 1995. Rock Physics and Phase Relations: a Handbook of Physical Constants. American Geophysical Union, 236 p.

2. Burgess S.D., Bowring S.A., 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Science Advances 1 (7), e1500470. https://doi.org/10.1126/sciadv.1500470.

3. Dalrymple B.G., Czamanske G.K., Fedorenko V.A., Simonov O.N., Lanphere M.A., Likhachev A.P., 1995. A reconnaissance 40Ar/39Ar geochronological study of ore-bearing and related rocks, Siberian Russia. Geochimica et Cosmochimica Acta 59 (10), 2071–2083. https://doi.org/10.1016/016-7037(95)00127-1.

4. Dortman N.B. (Ed.), 1984. Physical Properties of Rocks and Minerals (Petrophysics). Geophysics Guidebook. Nedra, Mos­cow, 455 p. (in Russian)

5. Egorov L.S., 1991. Ijolite-carbonatite Plutonism (Case of the Maymecha-Kotuy Complex, Polar Siberia). Nedra, Lenin­grad, 260 p. (in Russian)

6. Epstein E.M., 1994. Geological-Petrological Model and Genetic Features of Ore-Bearing Carbonatite Complexes. Nedra, Moscow, 256 p. (in Russian)

7. Ernst R.E., Davies D.R., Jowitt S.M., Campbell I.H., 2018. When do mantle plumes destroy diamonds? Earth and Planetary Science Letters 502, 244–252. https://doi.org/10.1016/j.epsl.2018.08.058.

8. Flowers R.M., Mahan K.H., Bowring S.A., Williams M.L., Pringle M.S., Hodges K.V., 2006. Multistage exhumation and juxtaposition of lower continental crust in the western Canadian Shield: Linking high-resolution U-Pb and 40Ar/39Ar thermochronometry with pressure-temperature-deformation paths. Tectonics 25 (4), TC4003. https://doi.org/10.1029/2005TC001912.

9. Galbraith R.F., 2005. Statistics for Fission Track Analysis. Chapman & Hall/CRC, Boca Raton, 219 p.

10. Galbraith R.F., Laslett G.M., 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measu­rements 21 (4), 459–470. https://doi.org/10.1016/1359-0189(93)90185-C.

11. Gleadow A.J.W., 1981. Fission-track dating methods: what are the real alternatives? Nuclear Tracks 5 (1–2), 3–14. https://doi.org/10.1016/0191-278X(81)90021-4.

12. Grapes R., 2006. Pyrometamorphism. Springer, Berlin, Heidelberg, New York, 280 p.

13. Hall J.W., Glorie S., Reid A.J., Boone S.C., Collins A.S., Gleadow A., 2018. An apatite U–Pb thermal history map for the northern Gawler Craton, South Australia. Geoscience Frontiers 9 (5), 1293–1308. https://doi.org/10.1016/j.gsf.2017.12.010.

14. Heaman L.M., LeCheminant A.N., 2001. Anomalous U-Pb systematics in mantle-derived baddeleyite xenocrysts from Île Bizard: Evidence for high temperature radon diffusion? Chemical Geology 172 (1–2), 77–93. https://doi.org/10.1016/S0009-2541(00)00237-0.

15. Hendriks В., Andriessen P., Huigen Y., Leighton C., Redfield T., Murrell G., Gallagher K., Nielsen S.B., 2007. A fission track data compilation for Fennoscandia. Norwegian Journal of Geology 87 (1–2), 143–155.

16. Hurford A.J., 1990. Standardization of fission track dating calibration: Recommended by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience section 80 (2), 171–178. https://doi.org/10.1016/0168-9622(90)90025-8.

17. Hurford A.J., Green P.F., 1983. The Zeta-Age Calibration of Fission-Track Dating. Chemical Geology 41, 285–317. https://doi.org/10.1016/S0009-2541(83)80026-6.

18. Ivanov A.V., He H., Yan L., Ryabov V.V., Shevko A.Y., Palesskii S.V., Nikolaeva I.V., 2013. Siberian Traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Science Reviews 122, 58–76. https://doi.org/10.1016/j.earscirev.2013.04.001.

19. Ivanov A.V., He H., Yang L., Nikolaeva I.V., Palesskii S.V., 2009. 40Ar/39Ar dating of intrusive magmatism in the Angara-Taseevskaya syncline and its implication for duration of magmatism of the Siberian Traps. Journal of Asian Earth Sciences 35 (1), 1–12. https://doi.org/10.1016/j.jseaes.2008.11.006.

20. Ivanov A.V., Mukasa S.B., Kamenetsky V.S., Ackerson M., Demonterova E.I., Pokrovsky B.G., Vladykin N.V., Kolesnichenko M.V., Litasov K.D., Zedgenizov D.A., 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology 483, 442–462. https://doi.org/10.1016/j.chemgeo.2018.03.011.

21. Ivanov A.V., Rasskazov S.V., Feoktistov G.D., He H., Boven A., 2005. 40Ar/39Ar dating of Usol’skii sill in the south-eastern Siberian Traps Large Igneous Province: evidence for long-lived magmatism. Terra Nova 17 (3), 203–208. https://doi.org/10.1111/j.1365-3121.2004.00588.x.

22. Jones M.Q.W., 2017. Anomalous geothermal gradients and heat flow in the Limpopo Province, South Africa: Implications for geothermal energy exploration. South African Journal of Geology 120 (2), 231–240. https://doi.org/10.25131/gssajg.120.2.231.

23. Kamo S.L., Czamanske G.K., Amelin Y., Fedorenko V.A., Davis D.W., Trofimov V.R., 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214 (1–2), 75–91. https://doi.org/10.1016/S0012-821X(03)00347-9.

24. Kamo S.L., Czamanske G.K., Krogh T.E., 1996. A minimum U-Pb age for Siberian flood-basalt volcanism. Geochimica et Cosmochimica Acta 60 (18), 3505–3511. https://doi.org/10.1016/0016-7037(96)00173-1.

25. Kargin A.V., Golubeva Yu.Yu., Demonterova E.I., Koval’­chuk E.V., 2017. Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar Province, Yakutia, Russia. Petrology 25 (6), 535–565. https://doi.org/10.1134/S0869591117060030.

26. Ketcham R.A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry 58 (1), 275–314. https://doi.org/10.2138/rmg.2005.58.11.

27. Khudoley A.K., Verzhbitsky V.E., Zastrozhnov D.A., O’Sullivan P., Ershova V.B., Proskurnin V.F., Tuchkova M.I., Rogov M.A., Kyser K., Malyshev S.V., Schneider G.V., 2018. Late Paleozoic – Mesozoic tectonic evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression. Journal of Geodynamics 119, 221–241. https://doi.org/10.1016/j.jog.2018.02.002.

28. Kogarko L.N., Zartman R.E., 2011. New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha-Kotuy province and the Siberian superplume: U-Th-Pb isotopic systematics. Geochemistry International 49 (5), 439–448. https://doi.org/10.1134/S0016702911050065.

29. Leitch A.M., Weinberg R.F., 2002. Modelling granite migration by mesoscale pervasive flow. Earth and Planetary Science Letters 200 (1–2), 131–146. https://doi.org/10.1016/S0012-821X(02)00596-4.

30. Lopatin G.G., Nechaev P.S., Trofimov V.R. et al., 1998. Group geological survey in scale 1:200,000 in the northern part of the Siberian platform in the Guli area within sheets R-47-XI and XII. Report of the Polar Party, Norilskgeologia for 1990–1996. Talnakh. Krasnoyarsk TFGI, No. 30316 (in Russian)

31. Malich K.N., Khiller V.V., Badanina I.Yu., Belousova E.A., 2015. Results of dating of thorianite and baddeleyite from carbonatites of the Guli massif, Russia. Doklady Earth Sciences 464 (2), 1029–1032. https://doi.org/10.1134/S1028334X15100050.

32. Malusà M.G., Fitzgerald P.G. (Eds.), 2019. Fission-Track Thermochronology and its Application to Geology. Springer, Cham, 393 p. https://doi.org/10.1007/978-3-319-89421-8.

33. Pechersky D.M., Zakharov V.S., Lyubushin A.A., 2004. Con­tinuous record of geomagnetic field variations during cooling of the Monchegorsk, Kivakka and Bushveld Early Proterozoic layered intrusions. Russian Journal of Earth Sciences 6 (6), 391–456. https://doi.org/10.2205/2004ES000158.

34. Petrunin G.I., Popov V.G., 2011. Thermophysical Properties of the Earth’s Substance (Part 1). Faculty of Physics, Moscow State University, Moscow, 68 p. (in Russian)

35. Reiners P.W., Ehlers T.A., Zeitler P.K., 2005. Past, present, and future of thermochronology. Reviews in Mineralogy and Geochemistry 58 (1), 1–18. https://doi.org/10.2138/rmg.2005.58.1.

36. Renne P.R., Mundil R., Balco G., Min K., Ludwig K.R., 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta 74 (18), 5349–5367. https://doi.org/10.1016/j.gca.2010.06.017.

37. Rosen O.M., Soloviev A.V., Zhuravlev D.Z., 2009. Thermal evolution of the northeastern Siberian platform in the light of apatite fission-track dating of the deep drill core. Izvestiya, Physics of the Solid Earth 45 (10), 914–931. https://doi.org/10.1134/s1069351309100085.

38. Ryabchikov I.D., Kogarko L.N., Solovova I.P., 2009. Physicochemical conditions of magma formation at the base of the Siberian plume: Insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui province. Petrology 17 (3), 287–299. https://doi.org/10.1134/S0869591109030059.

39. Settle M., 1979. Lava rheology: thermal buffering produced by the latent heat of crystallization. In: Lunar and planetary science conference, vol. 10, p. 1107–1109.

40. Simonov V.A., Vasil’ev Yu.R., Stupakov S.I., Kotlyarov A.V., Karmanov N.S., 2016. Petrogenesis of dunites of the Guli ultrabasic massif (northern Siberian Platform). Russian Geology and Geophysics 57 (12), 1696–1715. https://doi.org/10.1016/j.rgg.2016.04.009.

41. Sobolev N.V., Sobolev A.V., Tomilenko A.A., Kuz’min D.V., Grakhanov S.A., Batanova V.G., Logvinova A.M., Bul’bak T.A., Kostrovitskii S.I., Yakovlev D.A., Fedorova E.N., Anastasenko G.F., Nikolenko E.I., Tolstov A.V., Reutskii V.N., 2018. Prospects of search for diamondiferous kimberlites in the northeastern Siberian Platform. Russian Geology and Geophysics 59 (10), 1365–1379. https://doi.org/10.1016/j.rgg.2018.09.012.

42. Sorokhtina N.V., Kogarko L.N., Zaitsev V., Kononkova N.N., Asavin A.M. 2019. Sulfide Mineralization in the Carbonatites and Phoscorites of the Guli Massif, Polar Siberia, and Their Noble-Metal Potential. Geochemistry International, 57(11), 1125–1146. https://doi.org/10.1134/S0016702919110107.

43. Spiridonov E.M., Ladygin V.M., Simonov O.N., Kulagov E.A., Stepanov V.K., 2000. Metavolcanites of Prenite-Pumpelliite and Zeolite Facies of the Trappe Formation of the Norilsk Region of the Siberian Platform. MSU Publishing House, Moscow, 221 p. (in Russian)

44. State Geological Map of the Russian Federation, 1996. Scale 1:200000. Maymecha-Kotuy Series. Explanatory Note.Sheets R-47-XI, XII-Gul. Saint Petersburg, 281 p. (in Rus­sian)

45. Toulmin P., Barton P.B., Wiggins L.B., 1991. Commentary on the sphalerite geobarometer. American Mineralogist 76, 1038–1051.

46. Vasiliev Yu.R., Zolotukhin V.V., 1975. Petrology of Ultrabasites of the Northern Region of the Siberian Platform and Some Problems of Their Genesis. Proceedings of the Institute of Geology and Geophysics. Vol. 166. Nauka, Novosibirsk, 271 p. (in Russian)

47. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Botsyun S.B., Travin A.V., Yudin D.S., Samsonov A.V., Stepanova A.V., 2019. Thermochronology and exhumation history of the northeastern Fennoscandian Shield since 1.9 Ga: evidence from 40Ar/39Ar and apatite fission track data from the Kola Peninsula. Tectonics 38 (7), 2317–2337. https://doi.org/10.1029/2018TC005250.

48. Voevodin V.V., Zhumatiy S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A., Nikitenko D.A., Stefanov K.S., Voevodin V.V., 2012. The practice of the Lomonosov supercomputer. Open Systems. DBMS (7), 36–39 (in Russian)

49. Zaitsev V.A., Elizarov D.V., Bychkova Y.V., Senin V.G., Baynova T.B., 2018. First data on the geochemistry and age of the Kontay intrusion in Polar Siberia. Geochemistry Interna­tional 56 (3), 211–225. https://doi.org/10.1134/S0016702918030102.


Review

For citations:


Myshenkova M.S., Zaitsev V.A., Thomson S., Latyshev A.V., Zakharov V.S., Bagdasaryan T.E., Veselovsky R.V. THERMAL HISTORY OF THE GULI PLUTON (NORTH OF THE SIBERIAN PLATFORM) ACCORDING TO APATITE FISSION-TRACK DATING AND COMPUTER MODELING. Geodynamics & Tectonophysics. 2020;11(1):75-87. (In Russ.) https://doi.org/10.5800/GT-2020-11-1-0464

Views: 1355


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)