Preview

Geodynamics & Tectonophysics

Advanced search

SEISMOGRAVITATIONAL PROCESSES ACCOMPANYING THE EVOLUTION OF SEISMIC FOCAL STRUCTURES IN THE LITHOSPHERE

https://doi.org/10.5800/GT-2020-11-1-0462

Abstract

Observations reflecting the structure and conditions of the seismogravitational process in the lithosphere were analyzed using the data on the catastrophic tsunamigenic earthquake of Maule (Chile) [Sobisevich et al., 2019]. Seismogravitational processes were first identified by a group of Soviet scientists from the city of Leningrad (now St. Petersburg) under the leadership of Professor E.M. Linkov [Linkov et al., 1982, 1990]. The study of these processes continues at the North Caucasus Geophysical Observatory of IPE RAS, which was established in 2004. Experiments are carried out using unique quartz tiltmeters designed by D.G. Gridnev, which ensure the stable registration of long–period seismogravitational processes on the scale of the Earth [Sobisevich, 2013; Sobisevich et al., 2017].

About the Authors

A. L. Sobisevich
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

ALEXEY L. SOBISEVICH Corresponding Member of RAS, Doctor of Physical and Mathematical Sciences, Head of laboratory

10-1 Bolshaya Gruzinskaya St, Moscow 123242, Russia



L. E. Sobisevich
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

LEONID E. SOBISEVICH Doctor of Technical Sciences, Professor, Chief Researcher

10-1 Bolshaya Gruzinskaya St, Moscow 123242, Russia



D. V. Likhodeev
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

DMITRY V. LIKHODEEV Candidate of Physical and Mathematical Sciences, Senior Researcher

10-1 Bolshaya Gruzinskaya St, Moscow 123242, Russia



References

1. Ade P.A.R., Aikin R.W., Barkats D., Benton S.J., Bischoff C.A., Bock J.J., Brevik J.A., Buder I., Bullock E., Dowell C.D., Duband L., Filippini J.P., Fliescher S., Golwala S.R., Halpern M., Hasselfield M., Hildebrandt S.R., Hilton G.C., Hristov V.V., Irwin K.D., Karkare K.S., Kaufman J.P., Keating B.G., Kernasovskiy S.A., Kovac J.M., Kuo C.L., Leitch E.M., Lueker M., Mason P., Netterfield C.B., Nguyen H.T., O’Brient R., Ogburn R.W., Orlando A., Pryke C., Reintsema C.D., Richter S., Schwarz R., Sheehy C.D., Staniszewski Z.K., Sudiwala R.V., Teply G.P., Tolan J.E., Turner A.D., Vieregg A.G., Wong C.L., Yoon K.W., 2014. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Physical Review Letters 112 (24), 241101. https://doi.org/10.1103/PhysRevLett.112.241101.

2. Fraser-Smith A.C., 2008. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. Eos, Transactions American Geophysical Union 89 (23), 211. https://doi.org/10.1029/2008EO230007.

3. Gokhberg M.B., Steblov G.M., Shalimov S.L., Veis V.A., Grekhova E.A., 2011. Ionospheric response to submarine earthquake of March 11, 2011, in Japan according to GPS observations. Izvestiya, Atmospheric and Oceanic Physics 47 (8), 929–940. https://doi.org/10.1134/S0001433811080020.

4. Guglielmi A.V., Sobisevich L.E., Sobisevich A.L., Lavrov I.P., 2014. Foreshocks of strong earthquakes. Izvestiya, Physics of the Solid Earth 50 (4), 501–507. https://doi.org/10.1134/S1069351314040053.

5. Han S.C., Sauber J., Luthcke S., 2010. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophysical Research Letters 37 (23), L23307. https://doi.org/10.1029/2010GL045449.

6. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., Hayakawa M., 2003. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes. Natural Hazards and Earth System Sciences 3 (3–4), 211–215. https://doi.org/10.5194/nhess-3-211-2003.

7. Ismaguilov V.S., Kopytenko Yu.A., Hattori K., Voronov P.M., Molchanov O.A., Hayakawa M., 2001. ULF Magnetic emissions connected with under sea bottom earthquakes. Natural Hazards and Earth System Sciences 1 (1–2), 23–31. https://doi.org/10.5194/nhess-1-23-2001.

8. Kimura M., Kame N., Watada S., Ohtani M., Araya A., Imanishi Y., Ando M., Kunugi T., 2019. Earthquake-induced prompt gravity signals identified in dense array data in Japan. Earth Planets Space 71, 27. https://doi.org/10.1186/s40623-019-1006-x.

9. Kopytenko Y.A., Matiashvili T.G., Voronov P.M., Kopytenko E.A., Molchanov O.A., 1993. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Physics of the Earth and Planetary Interiors 77 (1–2), 85–95. https://doi.org/10.1016/0031-9201(93)90035-8.

10. Linkov E.M., 1987. Seismic Phenomena. Leningrad State University, Leningrad, 248 p. (in Russian)

11. Linkov E.M., Petrova L.N., Osipov K.Ts., 1990. Seismogravitational pulsations of the Earth and atmospheric disturbances as possible precursors of strong earthquakes. Doklady AN SSSR 313 (5), 1095–1098 (in Russian)

12. Linkov E.M., Petrova L.N., Savina N.G., Yanovskaya T.B., 1982. Super-long-period oscillations of the Earth. Doklady AN SSSR 262 (2), 321–324 (in Russian)

13. Melnick D., Moreno M., Motagh M., Cisternas M., Wesson R., 2012: Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology 40 (3), 251–254. https://doi.org/10.1130/G34825Y.1.

14. Moore G.W., 1964. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature 203 (4944), 508–509. https://doi.org/10.1038/203508b0.

15. Moreno M., Rosenau M., Oncken O., 2010. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467 (7312), 198–202. https://doi.org/10.1038/nature09349.

16. Nikolaevskiy V.N., Sobisevich L.E., 2015. The nature of bifocal source of the earthquake and precursors of the blow. Geofizicheskiy Zhurnal (Geophysical Journal) 37 (4), 51–74 (in Russian)https://doi.org/10.24028/gzh.0203-3100.v37i4.2015.111125.

17. Schekotov A.Y., Molchanov O.A., Hayakawa M., Fedorov E.N., Chebrov V.N., Sinitsin V.I., Gordeev E.E., Belyaev G.G., Yagova N.V., 2007. ULF/ELF magnetic field variations from atmosphere induced by seismicity. Radio Science 42 (6), RS6S90. https://doi.org/10.1029/2005RS003441.

18. Sobisevich A.L., 2013. Selected Problems of Mathematical Geophysics, Volcanology and Geoecology. Volume 2. North Caucasus Geophysical Observatory. Creation and Analysis of Observation Results. IPE RAS, Moscow, 512 p. (in Russian)

19. Sobisevich A.L., 2018. Gravimagnetism: results of observatory monitoring. Doklady Earth Sciences 480 (2), 783– 787. https://doi.org/10.1134/S1028334X1806017X.

20. Sobisevich A.L., Sobisevich L.E., Canonidi K.Kh., 2019. ULF Disturbances in Variations of the Earth’s Magnetic Field. IPE RAS, Moscow, 223 p. (in Russian)

21. Sobisevich A.L., Sobisevich L.E., Kanonidi K.K., Likhodeev D.V., 2017. Gravimagnetic perturbations preceding earthquakes. Doklady Earth Sciences 475 (2), 891–894. https://doi.org/10.1134/S1028334X17080086.

22. Sobisevich L.E., Starostenko V.I., Rogozhyn E.A., Lutikov A.I., Sobisevich A.L., Kanonidi K.H., Kendzera A.V., Orlyuk M.I., 2016. Abnormal geophysical and seismotectonic processes observed during the period of preparation and development of the earthquake with a magnetude of 8.8 Maule 2010 (Chile). Geofizicheskiy Zhurnal (Geophysical Journal) 38 (6), 25–39 (in Russian) https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91957.

23. Vallée M., Ampuero J.P., Juhel K., Bernard P., Montagner J.P., Barsuglia M., 2017. Observations and modeling of the elastogravity signals preceding direct seismic waves. Science 358 (6367), 1164–1168. https://doi.org/10.1126/science.aao0746.


Review

For citations:


Sobisevich A.L., Sobisevich L.E., Likhodeev D.V. SEISMOGRAVITATIONAL PROCESSES ACCOMPANYING THE EVOLUTION OF SEISMIC FOCAL STRUCTURES IN THE LITHOSPHERE. Geodynamics & Tectonophysics. 2020;11(1):53-61. (In Russ.) https://doi.org/10.5800/GT-2020-11-1-0462

Views: 1114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)