Preview

Geodynamics & Tectonophysics

Advanced search

THE STRUCTURAL EVOLUTION OF OCEANIC CORE COMPLEXES: A CONCEPT BASED ON ANALOG MODELING

https://doi.org/10.5800/GT-2020-11-1-0458

Abstract

Oceanic core complexes are lithological assemblages of predominantly peridotites and serpentinites, located along intersections of some slow-spreading oceanic accreting rifts and fracture zones, embedded in the predominantly basaltic oceanic lithosphere, and fresh and old basalts are juxtaposed across the fracture zone. Centrifuge-based experimental models indicated that subduction would initiate at sites where two lithospheric slabs are juxtaposed, provided that the density difference between them is at least 200 kg/m3 and the friction along their contact plane is low. It was discerned that the modeled underthrust denser lithosphere would reach the modeled asthenosphere and represent tectonic subduction. In many such occurrences, extension in the over-riding slab would develop normal faults that could be penetrated by the lighter fraction of the subducted slab, generating volcanism and diapirism. These experiments suggest further that since the density contrasts and the low friction constraints could be satisfied at the intersections of fracture zones and slow-spreading oceanic ridges, subduction could occur there too and not only along ocean-continent boundaries. Furthermore, since the thermal gradient in ridge-fracture zone intersections is very steep and volatiles in the underthrust slab abound in the subducted slab, a portion of the underthrust basalts would undergo serpentinization and another segment could become peridotitic. It is suggested further that the light serpentinite would ascend through the normal faults in the over-riding slab and reach the seafloor diapirically, carrying along large sections of peridotite, to produce the serpentinite-peridotite petrology that typifies oceanic core complex at junctions of fracture zones and slow spreading ridges.

About the Author

Y. Mart
Recanati Institute of Maritime Studies, University of Haifa, Haifa, Israel
Israel

YOSSI MART Professor

Haifa 3498838, Israel



References

1. Agostini A., Corti G., Zeoli A., Mulugeta G., 2009. Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models. Geochemistry, Geophysics, Geosystems 10 (11), Q11015. https://doi.org/10.1029/ 2009GC002676.

2. Ahrens T., Schubert G., 1975. Gabbro-eclogite reaction rate and its geophysical significance. Reviews of Geophysics 13 (2), 383–400. https://doi.org/10.1029/RG013i002p00383.

3. Andreani M., Mevel C., Boullier A.-M., Escartin J., 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems 8 (2), Q02012. https://doi.org/10.1029/2006GC001373.

4. Benioff H., 1951. Global strain accumulation and release as revealed by great earthquakes. Geological Society of America Bulletin 62 (4), 331–338. https://doi.org/10.1130/ 0016-7606(1951)62[331:GSAARA]2.0.CO;2.

5. Bonatti E., 1968. Ultramafic rocks from the Mid-Atlantic Ridge. Nature 219 (5152), 363–364. https://doi.org/10.1038/219363a0.

6. Boutelier D., Beckett D., 2018. Initiation of subduction along oceanic transform faults: insights from three-dimensional analog modeling experiments. Frontiers in Earth Science 6, 204. https://doi.org/10.3389/feart.2018.00204.

7. Brune S., Williams S., Mueller D., 2018. Oblique rifting: the rule, not the exception. Solid Earth 9 (5), 1187–1206. https://doi.org/10.5194/se-9-1187-2018.

8. Cann J.R., Blackman D.K., Smith D.K., McAllister E., Janssen B., Mello S., Avgerinos E., Pascoe A.R., Escartin J., 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385 (6614), 329– 332. https://doi.org/10.1038/385329a0.

9. Cannat M., Bideau D., Bougault H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37’ N and 16°52’ N. Earth and Planetary Letters 109 (1–2), 87–106. https://doi.org/10.1016/0012-821X(92)90076-8.

10. Cannat. M., Bideau. D., Hebert. R., 1990. Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth and Planetary Science Letters 101 (2–4), 216–232. https://doi.org/10.1016/0012-821X(90)90155-Q.

11. Cannat M., Mevel C., Maia M., Deplus C., Durand C., Genite P., Agrinier P., Ballarouchi A., Dubuisson G., Hurnier E., Reynolds J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23 (1), 49–52. https://doi.org/10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2.

12. Casey J.F., Dewey J.F., 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres – implications for ophiolitic geology and obduction. In: I.G. Gass, S.J. Lippard, A.W. Shelton (Eds), Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, vol. 13, p. 269–290. https://doi.org/10.1144/GSL.SP.1984.013.01.22.

13. Chemenda A.I., Mattauer M., Malavieille J., Bokun A.N., 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth and Planetary Science Letters 132 (1–4), 225–232. https://doi.org/10.1016/0012-821X(95)00042-B.

14. Constantin M., Hekinian R., Ackermand D., Stoffers P., 1995. Mafic and ultramafic intrusions into upper mantle peridotites from fast spreading centers of the Easter Microplate (South East Pacific). In: R.L.M. Vissers, A. Nicolas (Eds), Mantle and lower crust exposed in oceanic ridges and in ophiolites. Springer, Netherlands, p. 71–120.

15. Dannowski A., Grevenmeyer I., Ranero C.R., Ceuleneer G., Maia M., Morgan J.P., Gente P., 2010. Seismic structure of an oceanic core complex at the Mid‐Atlantic Ridge, 22°19′N. Journal of Geophysical Research: Solid Earth 115 (B7), B07106. https://doi.org/10.1029/2009JB006943.

16. Dewey J.F., Casey J.F., 2011. The origin of obducted large-slab ophiolite complexes. In: D. Brown, P.D. Ryan (Eds), Arc-continent collision. Springer, Berlin, p. 431–444. https://doi.org/10.1007/978-3-540-88558-0_15.

17. Dick H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 71–105. https://doi.org/10.1144/GSL.SP.1989.042.01.06.

18. Dick H.J.B., Bullen T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86 (1), 54–76. https://doi.org/10.1007/BF00373711.

19. Dick H.J.B., Tivey M.A., Tucholke B.E., 2008. Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30’N, 45°40’W. Geochemistry, Geophysics, Geosystems 9 (5), Q05014. https://doi.org/10.1029/2007GC001645.

20. Escartin J., Smith D.K., Cann J., Schouten H., Langmuir C.H., Escrig S., 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455 (7214), 790–794. https://doi.org/10.1038/nature 07333.

21. Ewing J., Ewing M., 1959. Seismic refraction measurements in the Atlantic Ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge, and in the Norwegian Sea. Geological Society of America Bulletin 70 (3), 291–318. https://doi.org/10.1130/0016-7606(1959)70[291:SMI TAO]2.0.CO;2.

22. Fossen H., 2016. Structural Geology. Second Edition. Cambridge University Press, Cambridge, 503 p.

23. Francheteau J., Choukroune P., Hekinian R., Le Pichon X., Needham H.D., 1976. Oceanic fracture zones do not provide deep sections in the crust. Canadian Journal of Earth Sciences 13 (9), 1223–1235. https://doi.org/10.1139/e76-124.

24. Gerya T.V., 2011. Intra-oceanic subduction zones. In: D. Brown, P.D. Ryan (Eds.), Arc-continent collision. Springer, Berlin, p. 23–53. https://doi.org/10.1007/978-3-540-88558-0_2.

25. Ghose I., Cannat M., Seyler M., 1996. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology 24 (12), 1139– 1142. https://doi.org/10.1130/0091-7613(1996)024<1139:TFEOMM>2.3.CO;2.

26. Goren L., Aharonov E., Mulugeta G., Koyi H.A., Mart Y., 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research: Solid Earth 113 (B8), B08411. https://doi.org/10.1029/2005JB004179.

27. Guillot S.P., Schwartz S.P., Reynard B., Agard P., Prigent C.C., 2015. Tectonic significance of serpentinites. Tectonophysics 646, 1–19. https://doi.org/10.1016/j.tecto.2015.01.020.

28. Hawkins J.W., 2003. Geology of supra-subduction zones: Implications for the origin of ophiolites. In: Y. Dilek, S. Newcomb (Eds.), Ophiolite concept and the evolution of geological thought. Geological Society of America Special Paper, vol. 373, p. 227–268. https://doi.org/10.1130/0-8137-2373-6.227.

29. Hékinian R., Bideau D., Hébert R., Niu Y., 1995. Magmatism in the Garrett transform fault (East Pacific Rise near 13 27′ S). Journal of Geophysical Research: Solid Earth 100 (B6), 10163–10185. https://doi.org/10.1029/94JB02125.

30. Hess H.H., 1955. Serpentinites, orogeny and epeirogeny. In: A. Poldervaart (Ed.), Crust of the Earth: A Symposium. Geological Society of America Special Paper vol. 62, p. 391–408. https://doi.org/10.1130/SPE62-p391.

31. Jarrard R.D., 1986. Relations among subduction parameters. Reviews of Geophysics 24 (2), 217–284. https://doi.org/10.1029/RG024i002p00217.

32. John B.E., Cheadle M.J., 2010. Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? In: P.A. Rona, C.W. Devey, J.D. Bramley, J. Murton (Eds.), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 175–205. https://doi.org/10.1029/2008GM000772.

33. Katz R.F., Spiegelman M., Langmuir C.H., 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems 4 (9), 1073. https://doi.org/10.1029/2002GC000433.

34. Kelemen P.B., Kikawa E., Miller D.J., and Shipboard Scientific party, 2007. 1. Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid- Atlantic Ridge, 14°–16°N. Scientific Results, Ocean Drilling Program, College Station, TX, 209, p. 1–33.

35. Kessel R., Ulmer O., Pettke T., Schmidt M.W., Thompson A.B., 2005. The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters 237 (3–4), 873–892. https://doi.org/10.1016/j.epsl.2005.06.018.

36. Khedr M.Z., Arai S., Python M., Tamura A., 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research 25 (3), 1242–1262. https://doi.org/10.1016/j.gr.2013.05.010.

37. Knott R., Fouquet Y., Honorez J., Peterson S., Bohn M., 1998. Petrology of hydrothermal mineralization: a vertical section through the TAG mound. In: P.M. Herzig, S.E. Humphris, D.J. Miller, R.A. Zierenberg (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158, Ocean Drilling Program, Texas, A & M University, College Station, TX, p. 5–26.

38. Le Pichon X., Sibuet J.-C., 1981, Passive margins: A model of formation. Journal of Geophysical Research: Solid Earth 86 (B5), 3708–3720. https://doi.org/10.1029/JB086iB05p03708.

39. Maffione M., Thieulot C., van Hinsbergen D.J.J., Morris A., Plümper O., Spakman W., 2015. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites. Geochemistry, Geophysics, Geosystems 16 (6), 1753–1770. https://doi.org/10.1002/2015GC005746.

40. Mart Y., Aharonov E., Mulugeta G., Ryan W., Tentler T., Goren L., 2005. Analogue modelling of the initiation of subduction. Geophysical Journal International 160 (3), 1081–1091. https://doi.org/10.1111/j.1365-246X.2005.02544.x.

41. Mart Y., Dauteuil O., 2000. Analogue experiments of propagation of oblique rifts. Tectonophysics 316 (1–2), 121–132. https://doi.org/10.1016/S0040-1951(99)00231-0.

42. McCaig A. M., Delacour A., Fallick A.E., Castelain T., Früh‐Green G., 2010. Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAT hydrothermal field using the Isotopic and geological evolution of oceanic core complexes in the Atlantic. In: P.A. Rona, C.W. Devey, J. Dyment, B.J. Murton (Eds), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 207–239. https://doi.org/10.1029/2008GM000729.

43. McKenzie D., 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40 (1), 25–32. https://doi.org/10.1016/0012-821X(78)90071-7.

44. Mével C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience 335 (10–11), 825–852. https://doi.org/10.1016/j.crte.2003.08.006.

45. Mortimer E., Paton D.A., Scholz C.A., Strecker M.R., Blisniuk P., 2007, Orthogonal to oblique rifting: effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa. Basin Research 19 (3), 393–407. https://doi.org/10.1111/j.1365-2117.2007.00332.x.

46. Mulugeta G., 1988. Squeeze box in a centrifuge. Tectonophysics 148 (3–4), 323–335. https://doi.org/10.1016/0040-1951(88)90139-4.

47. Nikolaeva K., Gerya T.V., Marques F.O., 2010. Subduction initiation at passive margins: Numerical modeling. Journal of Geophysical Research: Solid Earth 115 (B3), B03406. https://doi.org/10.1029/2009JB006549.

48. Ohara Y., Yoshida T., Kato Y., Kasuga S., 2001. Giant Megamullion in the Parece Vela backarc basin. Marine Geophysical Researches 22 (1), 47–61. https://doi.org/10.1023/A:1004818225642.

49. Parnell-Turner R., Sohn R.A., Peirce C., Reston T.J., MacLeod C.J., Searle R.C., Simão N.M., 2017. Oceanic detachment faults generate compression in extension. Geology 45 (10), 923–926. https://doi.org/10.1130/G39232.1.

50. Rouméjon S., Cannat M., Agrinier P., Godard M., Andreani M., 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65 °E). Journal of Petrology 56 (4), 703–734. https://doi.org/10.1093/petrology/egv014.

51. Scholz C.H., 2002. The Mechanics of Earthquakes and Faulting. Second Edition. Cambridge University Press, Cambridge, 485 p.

52. Scholz C.H., Campos J., 1995. On the mechanism of seismic decoupling and the back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth 100 (B11), 22103–22115. https://doi.org/10.1029/95JB01869.

53. Sclater J.G., Francheteau J., 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophysical Journal of the Royal Astronomical Society 20 (5), 509–542. https://doi.org/10.1111/j.1365-246X.1970.tb06089.x.

54. Shemenda A.I., 1993. Subduction of the lithosphere and back arc dynamics: Insights from physical modeling. Journal of Geophysical Research: Solid Earth 98 (B9), 16167– 16185. https://doi.org/10.1029/93JB01094.

55. Sibuet J.-C., Tucholke B.E., 2013. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins. In: W.U. Mohriak, A. Danforth, P.J. Post, D.E. Brown, G.C. Tari, M. Nemčok, S.T. Sinha (Eds), Conjugate divergent margins. Geological Society, London, Special Publications, vol. 369, p. 429–452. https://doi.org/10.1144/SP369.15.

56. Smith D.K., Cann J.R., Escartin J., 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442 (7101), 440– 443. https://doi.org/10.1038/nature04950.

57. Stein S., Stein C.A., 1996. Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. In G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (Eds), Subduction: top to bottom. Geophysical Monograph Series, vol. 96, p. 1–18. https://doi.org/10.1029/GM096p0001.

58. Taylor B., Goodliffe A., Martinez F., 2009. Initiation of transform faults at rifted continental margins. Comptes Rendus Geoscience 341 (5), 428–438. https://doi.org/10.1016/j.crte.2008.08.010.

59. Tucholke B.E., Jian L., Kleinrock M.C., 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth 103 (B5), 9857–9866. https://doi.org/10.1029/98JB00167.

60. Turner F.J., Verhoogen J., 1960. Igneous and Metamorphic Rocks. McGraw – Hill Book Co., New York, 694 p.

61. Wernicke B., 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22 (1), 108–125. https://doi.org/10.1139/e85-009.

62. Whitney D.L., Teyssier C., Rey P., Buck W.R., 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125 (3–4), 273–298. https://doi.org/10.1130/B30754.1.

63. Wilson J.T., 1965. A new class of faults and their bearing on continental drift. Nature 207 (4995), 343–347. https://doi.org/10.1038/207343a0.


Review

For citations:


Mart Y. THE STRUCTURAL EVOLUTION OF OCEANIC CORE COMPLEXES: A CONCEPT BASED ON ANALOG MODELING. Geodynamics & Tectonophysics. 2020;11(1):1-15. https://doi.org/10.5800/GT-2020-11-1-0458

Views: 1116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)