Preview

Геодинамика и тектонофизика

Расширенный поиск

СТРУКТУРНАЯ ЭВОЛЮЦИЯ ОКЕАНИЧЕСКИХ КОРОВЫХ КОМПЛЕКСОВ: КОНЦЕПЦИЯ, ОСНОВАННАЯ НА АНАЛОГОВОМ МОДЕЛИРОВАНИИ

https://doi.org/10.5800/GT-2020-11-1-0458

Полный текст:

Аннотация

Комплексы океанических ядер представляют собой литологические ассоциации преимущественно перидотитов и серпентинитов, которые располагаются вдоль пересечений медленноспрединговых океанических рифтов и разломных зон, локализованных в основном в базальтовой океанической литосфере; при этом молодые и древние базальты соседствуют по всей разломной зоне. Модели, разработанные на базе экспериментов с использованием центрифуги, показывают, что субдукция начинается на участках, где две литосферные плиты располагаются рядом друг с другом, при условии, что разность плотностей контактирующих литосферных слэбов составляет не менее 200 кг/м3, а трение вдоль плоскости их контакта низкое. Установлено, что в предполагаемой модели более плотная литосфера под давлением может достигать астеносферы, что представляет собой модель тектонической субдукции. Во многих случаях растяжение надвигающейся плиты приводит к развитию сбросов, в которые могут проникать более легкие части опускающейся плиты, вследствие чего возникают вулканы и диапиры. Эксперименты показывают, что, поскольку требуемые условия контрастности плотностей и низкого трения могут быть характерны для участков, где разломные зоны пересекаются с медленноспрединговыми океаническими хребтами, процессы, подобные субдукции могут происходить и на таких участках, а не только вдоль границы океан – континент. Более того, поскольку температурный градиент в зоне пересечения океанического хребта и разломной зоны очень высокий и летучие вещества поднадвигового слэба присутствуют в большом количестве в субдуцируемом слэбе, базальты в поднадвиговом слэбе будут частично подвергнуты серпентинизации, а другая часть – перидотитизации. Также можно предполагать, что легкие серпентиниты будут подниматься по сбросам в надвигающийся слэб и достигнут морского дна в виде диапиров, принося с собой большие объемы перидотитов, что приведет к образованию серпентинит-перидотитовых пород, типичных для комплексов океанических ядер на участках, где разломные зоны пересекаются с медленноспрединговыми океаническими хребтами.

Об авторе

Й. Март
Институт морских исследований им. Леона Реканати, Университет Хайфы
Израиль

ЙОССИ МАРТ Профессор

3498838, г. Хайфа, Израиль



Список литературы

1. Agostini A., Corti G., Zeoli A., Mulugeta G., 2009. Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models. Geochemistry, Geophysics, Geosystems 10 (11), Q11015. https://doi.org/10.1029/ 2009GC002676.

2. Ahrens T., Schubert G., 1975. Gabbro-eclogite reaction rate and its geophysical significance. Reviews of Geophysics 13 (2), 383–400. https://doi.org/10.1029/RG013i002p00383.

3. Andreani M., Mevel C., Boullier A.-M., Escartin J., 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems 8 (2), Q02012. https://doi.org/10.1029/2006GC001373.

4. Benioff H., 1951. Global strain accumulation and release as revealed by great earthquakes. Geological Society of America Bulletin 62 (4), 331–338. https://doi.org/10.1130/ 0016-7606(1951)62[331:GSAARA]2.0.CO;2.

5. Bonatti E., 1968. Ultramafic rocks from the Mid-Atlantic Ridge. Nature 219 (5152), 363–364. https://doi.org/10.1038/219363a0.

6. Boutelier D., Beckett D., 2018. Initiation of subduction along oceanic transform faults: insights from three-dimensional analog modeling experiments. Frontiers in Earth Science 6, 204. https://doi.org/10.3389/feart.2018.00204.

7. Brune S., Williams S., Mueller D., 2018. Oblique rifting: the rule, not the exception. Solid Earth 9 (5), 1187–1206. https://doi.org/10.5194/se-9-1187-2018.

8. Cann J.R., Blackman D.K., Smith D.K., McAllister E., Janssen B., Mello S., Avgerinos E., Pascoe A.R., Escartin J., 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385 (6614), 329– 332. https://doi.org/10.1038/385329a0.

9. Cannat M., Bideau D., Bougault H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37’ N and 16°52’ N. Earth and Planetary Letters 109 (1–2), 87–106. https://doi.org/10.1016/0012-821X(92)90076-8.

10. Cannat. M., Bideau. D., Hebert. R., 1990. Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth and Planetary Science Letters 101 (2–4), 216–232. https://doi.org/10.1016/0012-821X(90)90155-Q.

11. Cannat M., Mevel C., Maia M., Deplus C., Durand C., Genite P., Agrinier P., Ballarouchi A., Dubuisson G., Hurnier E., Reynolds J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23 (1), 49–52. https://doi.org/10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2.

12. Casey J.F., Dewey J.F., 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres – implications for ophiolitic geology and obduction. In: I.G. Gass, S.J. Lippard, A.W. Shelton (Eds), Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, vol. 13, p. 269–290. https://doi.org/10.1144/GSL.SP.1984.013.01.22.

13. Chemenda A.I., Mattauer M., Malavieille J., Bokun A.N., 1995. A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth and Planetary Science Letters 132 (1–4), 225–232. https://doi.org/10.1016/0012-821X(95)00042-B.

14. Constantin M., Hekinian R., Ackermand D., Stoffers P., 1995. Mafic and ultramafic intrusions into upper mantle peridotites from fast spreading centers of the Easter Microplate (South East Pacific). In: R.L.M. Vissers, A. Nicolas (Eds), Mantle and lower crust exposed in oceanic ridges and in ophiolites. Springer, Netherlands, p. 71–120.

15. Dannowski A., Grevenmeyer I., Ranero C.R., Ceuleneer G., Maia M., Morgan J.P., Gente P., 2010. Seismic structure of an oceanic core complex at the Mid‐Atlantic Ridge, 22°19′N. Journal of Geophysical Research: Solid Earth 115 (B7), B07106. https://doi.org/10.1029/2009JB006943.

16. Dewey J.F., Casey J.F., 2011. The origin of obducted large-slab ophiolite complexes. In: D. Brown, P.D. Ryan (Eds), Arc-continent collision. Springer, Berlin, p. 431–444. https://doi.org/10.1007/978-3-540-88558-0_15.

17. Dick H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: A.D. Saunders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 71–105. https://doi.org/10.1144/GSL.SP.1989.042.01.06.

18. Dick H.J.B., Bullen T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86 (1), 54–76. https://doi.org/10.1007/BF00373711.

19. Dick H.J.B., Tivey M.A., Tucholke B.E., 2008. Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30’N, 45°40’W. Geochemistry, Geophysics, Geosystems 9 (5), Q05014. https://doi.org/10.1029/2007GC001645.

20. Escartin J., Smith D.K., Cann J., Schouten H., Langmuir C.H., Escrig S., 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455 (7214), 790–794. https://doi.org/10.1038/nature 07333.

21. Ewing J., Ewing M., 1959. Seismic refraction measurements in the Atlantic Ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge, and in the Norwegian Sea. Geological Society of America Bulletin 70 (3), 291–318. https://doi.org/10.1130/0016-7606(1959)70[291:SMI TAO]2.0.CO;2.

22. Fossen H., 2016. Structural Geology. Second Edition. Cambridge University Press, Cambridge, 503 p.

23. Francheteau J., Choukroune P., Hekinian R., Le Pichon X., Needham H.D., 1976. Oceanic fracture zones do not provide deep sections in the crust. Canadian Journal of Earth Sciences 13 (9), 1223–1235. https://doi.org/10.1139/e76-124.

24. Gerya T.V., 2011. Intra-oceanic subduction zones. In: D. Brown, P.D. Ryan (Eds.), Arc-continent collision. Springer, Berlin, p. 23–53. https://doi.org/10.1007/978-3-540-88558-0_2.

25. Ghose I., Cannat M., Seyler M., 1996. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology 24 (12), 1139– 1142. https://doi.org/10.1130/0091-7613(1996)024<1139:TFEOMM>2.3.CO;2.

26. Goren L., Aharonov E., Mulugeta G., Koyi H.A., Mart Y., 2008. Ductile deformation of passive margins: A new mechanism for subduction initiation. Journal of Geophysical Research: Solid Earth 113 (B8), B08411. https://doi.org/10.1029/2005JB004179.

27. Guillot S.P., Schwartz S.P., Reynard B., Agard P., Prigent C.C., 2015. Tectonic significance of serpentinites. Tectonophysics 646, 1–19. https://doi.org/10.1016/j.tecto.2015.01.020.

28. Hawkins J.W., 2003. Geology of supra-subduction zones: Implications for the origin of ophiolites. In: Y. Dilek, S. Newcomb (Eds.), Ophiolite concept and the evolution of geological thought. Geological Society of America Special Paper, vol. 373, p. 227–268. https://doi.org/10.1130/0-8137-2373-6.227.

29. Hékinian R., Bideau D., Hébert R., Niu Y., 1995. Magmatism in the Garrett transform fault (East Pacific Rise near 13 27′ S). Journal of Geophysical Research: Solid Earth 100 (B6), 10163–10185. https://doi.org/10.1029/94JB02125.

30. Hess H.H., 1955. Serpentinites, orogeny and epeirogeny. In: A. Poldervaart (Ed.), Crust of the Earth: A Symposium. Geological Society of America Special Paper vol. 62, p. 391–408. https://doi.org/10.1130/SPE62-p391.

31. Jarrard R.D., 1986. Relations among subduction parameters. Reviews of Geophysics 24 (2), 217–284. https://doi.org/10.1029/RG024i002p00217.

32. John B.E., Cheadle M.J., 2010. Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? In: P.A. Rona, C.W. Devey, J.D. Bramley, J. Murton (Eds.), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 175–205. https://doi.org/10.1029/2008GM000772.

33. Katz R.F., Spiegelman M., Langmuir C.H., 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems 4 (9), 1073. https://doi.org/10.1029/2002GC000433.

34. Kelemen P.B., Kikawa E., Miller D.J., and Shipboard Scientific party, 2007. 1. Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid- Atlantic Ridge, 14°–16°N. Scientific Results, Ocean Drilling Program, College Station, TX, 209, p. 1–33.

35. Kessel R., Ulmer O., Pettke T., Schmidt M.W., Thompson A.B., 2005. The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters 237 (3–4), 873–892. https://doi.org/10.1016/j.epsl.2005.06.018.

36. Khedr M.Z., Arai S., Python M., Tamura A., 2014. Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research 25 (3), 1242–1262. https://doi.org/10.1016/j.gr.2013.05.010.

37. Knott R., Fouquet Y., Honorez J., Peterson S., Bohn M., 1998. Petrology of hydrothermal mineralization: a vertical section through the TAG mound. In: P.M. Herzig, S.E. Humphris, D.J. Miller, R.A. Zierenberg (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158, Ocean Drilling Program, Texas, A & M University, College Station, TX, p. 5–26.

38. Le Pichon X., Sibuet J.-C., 1981, Passive margins: A model of formation. Journal of Geophysical Research: Solid Earth 86 (B5), 3708–3720. https://doi.org/10.1029/JB086iB05p03708.

39. Maffione M., Thieulot C., van Hinsbergen D.J.J., Morris A., Plümper O., Spakman W., 2015. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites. Geochemistry, Geophysics, Geosystems 16 (6), 1753–1770. https://doi.org/10.1002/2015GC005746.

40. Mart Y., Aharonov E., Mulugeta G., Ryan W., Tentler T., Goren L., 2005. Analogue modelling of the initiation of subduction. Geophysical Journal International 160 (3), 1081–1091. https://doi.org/10.1111/j.1365-246X.2005.02544.x.

41. Mart Y., Dauteuil O., 2000. Analogue experiments of propagation of oblique rifts. Tectonophysics 316 (1–2), 121–132. https://doi.org/10.1016/S0040-1951(99)00231-0.

42. McCaig A. M., Delacour A., Fallick A.E., Castelain T., Früh‐Green G., 2010. Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAT hydrothermal field using the Isotopic and geological evolution of oceanic core complexes in the Atlantic. In: P.A. Rona, C.W. Devey, J. Dyment, B.J. Murton (Eds), Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, vol. 188, p. 207–239. https://doi.org/10.1029/2008GM000729.

43. McKenzie D., 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters 40 (1), 25–32. https://doi.org/10.1016/0012-821X(78)90071-7.

44. Mével C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience 335 (10–11), 825–852. https://doi.org/10.1016/j.crte.2003.08.006.

45. Mortimer E., Paton D.A., Scholz C.A., Strecker M.R., Blisniuk P., 2007, Orthogonal to oblique rifting: effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa. Basin Research 19 (3), 393–407. https://doi.org/10.1111/j.1365-2117.2007.00332.x.

46. Mulugeta G., 1988. Squeeze box in a centrifuge. Tectonophysics 148 (3–4), 323–335. https://doi.org/10.1016/0040-1951(88)90139-4.

47. Nikolaeva K., Gerya T.V., Marques F.O., 2010. Subduction initiation at passive margins: Numerical modeling. Journal of Geophysical Research: Solid Earth 115 (B3), B03406. https://doi.org/10.1029/2009JB006549.

48. Ohara Y., Yoshida T., Kato Y., Kasuga S., 2001. Giant Megamullion in the Parece Vela backarc basin. Marine Geophysical Researches 22 (1), 47–61. https://doi.org/10.1023/A:1004818225642.

49. Parnell-Turner R., Sohn R.A., Peirce C., Reston T.J., MacLeod C.J., Searle R.C., Simão N.M., 2017. Oceanic detachment faults generate compression in extension. Geology 45 (10), 923–926. https://doi.org/10.1130/G39232.1.

50. Rouméjon S., Cannat M., Agrinier P., Godard M., Andreani M., 2015. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65 °E). Journal of Petrology 56 (4), 703–734. https://doi.org/10.1093/petrology/egv014.

51. Scholz C.H., 2002. The Mechanics of Earthquakes and Faulting. Second Edition. Cambridge University Press, Cambridge, 485 p.

52. Scholz C.H., Campos J., 1995. On the mechanism of seismic decoupling and the back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth 100 (B11), 22103–22115. https://doi.org/10.1029/95JB01869.

53. Sclater J.G., Francheteau J., 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophysical Journal of the Royal Astronomical Society 20 (5), 509–542. https://doi.org/10.1111/j.1365-246X.1970.tb06089.x.

54. Shemenda A.I., 1993. Subduction of the lithosphere and back arc dynamics: Insights from physical modeling. Journal of Geophysical Research: Solid Earth 98 (B9), 16167– 16185. https://doi.org/10.1029/93JB01094.

55. Sibuet J.-C., Tucholke B.E., 2013. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins. In: W.U. Mohriak, A. Danforth, P.J. Post, D.E. Brown, G.C. Tari, M. Nemčok, S.T. Sinha (Eds), Conjugate divergent margins. Geological Society, London, Special Publications, vol. 369, p. 429–452. https://doi.org/10.1144/SP369.15.

56. Smith D.K., Cann J.R., Escartin J., 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442 (7101), 440– 443. https://doi.org/10.1038/nature04950.

57. Stein S., Stein C.A., 1996. Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. In G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (Eds), Subduction: top to bottom. Geophysical Monograph Series, vol. 96, p. 1–18. https://doi.org/10.1029/GM096p0001.

58. Taylor B., Goodliffe A., Martinez F., 2009. Initiation of transform faults at rifted continental margins. Comptes Rendus Geoscience 341 (5), 428–438. https://doi.org/10.1016/j.crte.2008.08.010.

59. Tucholke B.E., Jian L., Kleinrock M.C., 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth 103 (B5), 9857–9866. https://doi.org/10.1029/98JB00167.

60. Turner F.J., Verhoogen J., 1960. Igneous and Metamorphic Rocks. McGraw – Hill Book Co., New York, 694 p.

61. Wernicke B., 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22 (1), 108–125. https://doi.org/10.1139/e85-009.

62. Whitney D.L., Teyssier C., Rey P., Buck W.R., 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125 (3–4), 273–298. https://doi.org/10.1130/B30754.1.

63. Wilson J.T., 1965. A new class of faults and their bearing on continental drift. Nature 207 (4995), 343–347. https://doi.org/10.1038/207343a0.


Для цитирования:


Март Й. СТРУКТУРНАЯ ЭВОЛЮЦИЯ ОКЕАНИЧЕСКИХ КОРОВЫХ КОМПЛЕКСОВ: КОНЦЕПЦИЯ, ОСНОВАННАЯ НА АНАЛОГОВОМ МОДЕЛИРОВАНИИ. Геодинамика и тектонофизика. 2020;11(1):1-15. https://doi.org/10.5800/GT-2020-11-1-0458

For citation:


Mart Y. THE STRUCTURAL EVOLUTION OF OCEANIC CORE COMPLEXES: A CONCEPT BASED ON ANALOG MODELING. Geodynamics & Tectonophysics. 2020;11(1):1-15. https://doi.org/10.5800/GT-2020-11-1-0458

Просмотров: 430


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)