Preview

Geodynamics & Tectonophysics

Advanced search

Vendian – Early Cambrian granites of the Krutorechensky complex (Northern Urals, Russia): protolith age, geodynamic conditions of generation and transformation

https://doi.org/10.5800/GT-2019-10-4-0446

Abstract

The Main Uralian fault (MUF) zone is a suture at the junction of the Urals and the East European platform (EEP). Its complex tectonic melange is still poorly studied. We obtained new data on compositions and ages of the Krutorechensky granites (KG) composing an intensely tectonized and boudinaged elongated body discovered in meta‐ terrigenous and meta‐volcanogenic rocks in the western part of the MUF zone. In chemical composition, these gra‐ nites are similar to the Vendian‐Cambrian collisional granitoids of the Isherim and Lyapin blocks. The LA‐ICP‐MS method was used to determine U‐Pb zircon ages for the KG samples. The zircons contain ancient xenogenic cores (1221–1034 Ma) and young rims (400±6 Ma). The Middle Riphean ages of zircons from the protolith suggest that the KG block (belonging to the Prisalatim zone and located west of the MUF zone) is a fragment of the EEP, because the complexes of the Ordovician‐Devonian Tagil paleo‐island arc (located further eastward) are mostly dated to the Ven‐ dian. The KG crystallization age (537±2 Ma) is practically the first (Vendian) early Cambrian dating for the granites sampled in the MUF zone. Considering this age and the petrogeochemical features, there are grounds to suggest that the Krutorechensky granites originated due to tectonic‐magmatic events (with possible pluming) that took place at the final stage of the Timan collision, similar to granites of the western slope of the Northern Urals (Moiva, Posmak and Velsov massifs). Subsequently, these granites were involved in the Paleozoic accretion‐collision processes that created the modern MUF zone (i.e. tectonic melange). Our study results are important for clarifying the structure of the Urals‐EEP junction zone and useful for geological mapping and metallogenic assessment of the region.

About the Authors

A. V. Korovko
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher,

15 Akademik Vonsovsky street, Yekaterinburg 620016



G. Yu. Shardakova
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Lead Researcher,

15 Akademik Vonsovsky street, Yekaterinburg 620016



V. N. Puchkov
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Corresponding Member of RAS, Chief Researcher,

15 Akademik Vonsovsky street, Yekaterinburg 620016



V. B. Khubanov
Geological Institute, Siberian Branch of RAS; D. Banzarov Buryat State University
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher, 6a Sakhyanova street, Ulan-Ude 670047;

24a Smolin street, Ulan-Ude 670000



References

1. Buyantuev M.D., Khubanov V.B., Vrublevskaya Т.Т., 2017. U-Pb LA-ICP-MS dating of zircons from subvolcanics of the bimodal dyke series of the Western Transbaikalia: Technique, and evidence of the Late Paleozoic extension of the crust. Geodynamics & Tectonophysics 8 (2), 369–384 (in Russian) https://doi.org/10.5800/GT-2017-8-2-0246.

2. Dovzhikova E.G., Remizov D.N., Piis V.L., 2000. Geodynamic position of igneous rocks of the Pechora plate basement according to new data. In: Materials of the II All-Russia Petrographic Meeting. V. IV. Syktyvkar, p. 49–52 (in Russian).

3. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/ 10.1016/j.chemgeo.2004.06.017.

4. Kholodnov V.V., Shardakova G.Yu., Fershtater G.B., Shagalov E.S., 2018. The Riphean magmatism preceding the opening of Uralian paleoocean: geochemistry, isotopes, age, and geodynamic implications. Geodynamics & Tectonophysics 9 (2), 365–389. https://doi.org/10.5800/GT-2018-9-2-0351.

5. Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U-Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.

6. Korovko A.V., Borodina N.S., Vishnyakova M.D., Desyatnichenko L.I., Shardakova G.Yu., 2017. Geological, petrographic and geochemical features of granites of the Krutorechensky complex (Prisalatim zone, Northern Urals). In: Yearbook-2016. Proceedings of the Institute of Geology and Geochemistry UB RAS. Vol. 164. IGG UB RAS, Yekaterinburg, p. 120–124 (in Russian).

7. Kuznetsov N.B., Belousova E.A., Alekseev A.S., Romanyuk T.V., 2014. New data on detrital zircons from the sandstones of the lower Cambrian Brusov Formation (White Sea region, East-European craton): Unravelling the timing of the onset of the Arctida–Baltica collision. International Geology Review 56 (16), 1945–1963. https://doi.org/10.1080/ 00206814.2014.977968.

8. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V., Andreichev V.L., Dorokhov N.S., 2006. Pre-Uralian tectonic evolution of the north-east and east frame of the East European craton. Рart 1. Pre-Uralides, Timanides and PreOrdovician granitoid volcano-plutonic associations of the North Urals and Timan-Pechora region. Litosfera (Lithosphere) (4), 3–22 (in Russian).

9. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V., Andreichev V.L., Dorokhov N.S., 2007a. Pre-Uralian tectonic evolution of the north-east and east frame of the East European craton. Рart 1. Neo-Proterozoic–Cambrian Baltica– Arctida Collision. Litosfera (Lithosphere) (1), 32–45 (in Russian).

10. Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Hertseva M.V., Andreichev V.L., 2007b. Pre-Ordovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European craton. Gondwana Research 12 (3), 305–323. https://doi.org/10.1016/j.gr.2006.10.021.

11. Maslov A.V., Petrov G.A., Ronkin Y.L., 2018. Early stages of the evolution of uralides as evidenced from the U-Pb Systematics of detrital zircons from rift complexes. Stratigraphy and Geological Correlation 26 (2), 121–138. https:// doi.org/10.1134/S0869593818020065.

12. Pearce J.A., Harris N.B., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956.

13. Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69 (1), 33–47. https://doi.org/10.1007/BF00375192.

14. Petrov G.A., Ronkin Y.L., Gerdes A., Maslov A.V., 2015. First results of U–Pb dating of detrital zircons from metasandstones of the Isherim anticlinorium (North Urals). Doklady Earth Sciences 464 (2), 1010–1014. https://doi.org/10.1134/S1028334X15100165.

15. Petrov G.A., Ronkin Y.L., Tristan N.I., Gerdes A., Maslov A.V., 2014. New data on composition and age of granites from the Isherim anticlinorium and boundary of the Timanides in the North Urals. Doklady Earth Sciences 459 (2), 1514–1518. https://doi.org/10.1134/S1028334X14120290.

16. Puchkov V.N., 2010. Geology of the Urals and Cisurals (Topical Issues of Stratigraphy, Tectonics, Geodynamics and Metallogeny). Dauria Publishing House, Ufa, 280 p. (in Russian).

17. Puchkov V.N., 2018. The plume-dependent granite-rhyolite magmatism. Litosfera (Lithosphere) 18 (5), 692–705 (in Russian). https://doi.org/10.24930/1681-9004-2018-18-5-692-705.

18. Puchkov V., Ernst R.E., Hamilton M.A., Söderlund U., Sergeeva N., 2016. A Devonian >2000-km-long dolerite dyke swarm-belt and associated basalts along the Urals-Novozemelian fold-belt: part of an East-European (Baltica) LIP tracing the Tuzo Superswell. GFF 138 (1), 6–16. https://doi.org/10.1080/11035897.2015.1118406.

19. Puchkov V.N., Rosen O.M., Zhuravlev D.Z., Bibikova E.V., 2006. Contamination of Silurian volcanic rocks in the Tagil synform by Precambrian zircon. Doklady Earth Sciences 411 (2), 1381–1384. https://doi.org/10.1134/S1028334X06090108.

20. Rudnick R.L., Gao S., 2003. Composition of the continental crust. In: R.L. Rudnick (Ed.), Treatise on geochemistry. Vol. 3. Elsevier, Amsterdam, р. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

21. Samygin S.G., Belova A.A., Ryazantsev A.V., Fedotova A.A., 2010. Fragments of the Vendian convergent borderland in the South Urals. Doklady Earth Sciences 432 (2), 726–731. https://doi.org/10.1134/S1028334X10060036.

22. Shand S.J., 1943. The Eruptive Rocks. John Wiley, New York, 444 p. Shardakova G.Y., 2016. Geochemistry and isotopic ages of granitoids of the Bashkirian Mega-Anticlinorium: Evidence for several pulses of tectono-magmatic activity at the junction zone between the Uralian orogen and East European platform. Geochemistry International 54 (7), 594–608. https://doi.org/10.1134/S0016702916070089.

23. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J, 2008. Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

24. Sobolev I.D., Soboleva A.A., Udoratina O.V., Kaneva T.A., Kulikova K.V., Vikentiev I.V., Khubanov V.B., Buyantuev M.D., Hourigan J.K., 2017. First results of U-Pb (LA-ICP-MS) dating of detrital zircons from Paleozoic island arc clastic rocks of Polar Urals. Bulletin of Moscow Society of Naturalists, Geological section 92 (4), 3–26 (in Russian).

25. Soboleva A.A., Karchevskii A.F., Efanova L.I., Kuznetsov N.B., Grove M., Sobolev I.D., Maurin M.V., 2012. Evidence for Late Riphean granite formation in the Polar Urals. Doklady Earth Sciences 442 (2), 181–187. https://doi.org/10.1134/ S1028334X12020080.

26. State Geological Map, 2006. Scale 1:200000. Sheet P-40-XXXVI. VSEGEI, Saint Petersburg (in Russian).

27. Sun S.S., 1982. Chemical composition and origin of the Earth's primitive mantle. Geochimica et Cosmochimica Acta 46 (2), 179–192. https://doi.org/10.1016/0016-7037(82)90245-9.

28. Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the ocean basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

29. Udoratina O.V., Soboleva A.A., Kuzenkov N.A., Rodionov N.V., Presnyakov S.L., 2006. Age of granitoids in the Man’khambo and Il’yaiz plutons, the northern Urals: U-Pb data. Doklady Earth Sciences 407 (1), 284–289. https://doi.org/10.1134/S1028334X06020309.

30. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407–419. https://doi.org/10.1007/BF00402202.

31. Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., van Quadt A., Roddick J.C., Spiegel W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19 (1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x.

32. Zhdanov A.V., 2009. Legend of the Ural Series of Sheets of State Geological Map-1000/3 (Updated Version). VSEGEI, Saint Petersburg, 380 p. (in Russian).


Review

For citations:


Korovko A.V., Shardakova G.Yu., Puchkov V.N., Khubanov V.B. Vendian – Early Cambrian granites of the Krutorechensky complex (Northern Urals, Russia): protolith age, geodynamic conditions of generation and transformation. Geodynamics & Tectonophysics. 2019;10(4):863-878. (In Russ.) https://doi.org/10.5800/GT-2019-10-4-0446

Views: 657


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)