Enlargement of the area of the Timpton Large Igneous Province (ca. 1.75 ga) of the Siberian craton
https://doi.org/10.5800/GT-2019-10-4-0444
Abstract
About the Authors
D. P. GladkochubRussian Federation
Doctor of Geology and Mineralogy, Corresponding Member of RAS, Director, 128 Lermontov street, Irkutsk 664033;
134 Lermontov street, Irkutsk 664033;
Geological Faculty 3 Lenin street, Irkutsk 664003
T. V. Donskaya
Russian Federation
Candidate of Geology and Mineralogy, Lead Researcher,
128 Lermontov street, Irkutsk 664033
R. E. Ernst
Canada
PhD, Scientist in Residence, Professor, Department of Earth Sciences, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6;
36 Lenin ave., Tomsk 634050
U. Söderlund
Sweden
PhD, Head of Bedrock Geology, Department of Geology,
12 Sölvegatan, SE-223 62 Lund,
A. M. Mazukabzov
Russian Federation
Doctor of Geology and Mineralogy, Chief Researcher,
128 Lermontov street, Irkutsk 664033
M. N. Shokhonova
Russian Federation
Junior Researcher,
128 Lermontov street, Irkutsk 664033
References
1. Bukharov A.A., 1987. Proto-activated Zones of Ancient Platforms. Nauka, Novosibirsk, 202 p. (in Russian)
2. Coffin M.F., Eldholm O., 1994. Large igneous provinces – crustal structure, dimensions, and external consequences. Reviews of Geophysics 32 (1), 1–36. https://doi.org/10.1029/93RG02508.
3. Coffins M.F., Eldholm O., 2001. Igneous provinces. In: J.H. Steele, S.A. Thorpe, K.K. Turekian (Eds.), Encyclopedia of ocean sciences (2nd edition). Academic Press, p. 218–225. https://doi.org/10.1016/B978-012374473-9.00463-X.
4. D’Acremont E., Leroy S., Burov E., 2003. Numerical modelling of a mantle plume: the plume head-lithosphere interaction in the formation of an oceanic large igneous province. Earth and Planetary Science Letters 206 (3–4), 379‒396. https://doi.org/10.1016/S0012-821X(02)01058-0.
5. Didenko A.N., Gur'yanov V.A., Peskov A.Yu., Perestoronin A.N., Avdeev D.V., Bibikova E.V., Kirnozova T.I., Fugzan M.M., 2010. Geochemistry and geochronology of the Proterozoic magmatic rocks of the Ulkan trough: New data. Russian Journal of Pacific Geology 4 (5), 398–417. https://doi.org/10.1134/S1819714010050040.
6. Donskaya T.V., Gladkochub D.P., Ernst R.E., Pisarevsky S.A., Mazukabzov A.M., Demonterova E.I., 2018. Geochemistry and petrogenesis of Mesoproterozoic dykes of the Irkutsk Promontory, southern part of the Siberian craton. Minerals 8 (12), 545. https://doi.org/10.3390/min8120545.
7. Donskaya T.V., Gladkochub D.P., Shokhonova M.N., Mazukabzov A.M., 2014. Late Paleoproterozoic basites of the northern Baikal area: composition and melt sources. Russian Geology and Geophysics 55 (11), 1278–1294. https:// doi.org/10.1016/j.rgg.2014.10.003.
8. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Carnwall, UK, 654 p. Ernst R.E., Buchan K.L., Hamilton M.A., Okrugin A.V., Tomshin M.D., 2000. Integrated paleomagnetism and U–Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. The Journal of Geology 108 (4), 381–401. https://doi.org/ 10.1086/314413.
9. Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., Le Cheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.N., 2016a. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geosciences 9 (6), 464‒469. https://doi.org/10.1038/NGEO2700.
10. Ernst R.E., Okrugin A.V., Veselovskiy R.V., Kamo S.L., Hamilton M.A., Pavlov V., Söderlund U., Chamberlain K.R., Rogers C., 2016b. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russian Geology and Geophysics 57 (5), 653‒671. https://doi.org/10.1016/j.rgg.2016.01.015.
11. Evans D.A.D., Mitchell R.N., 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39 (5), 443–446. https://doi.org/10.1130/G31654.1.
12. Evans D.A.D., Veselovsky R.V., Petrov P.Yu., Shatsillo A.V., Pavlov V.E., 2016. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. Precambrian Research 281, 639‒655. https://doi.org/10.1016/j.precamres.2016.06.017.
13. Gladkochub D.P., Donskaya T.V., Ernst R.E., Hamilton M.A., Mazukabzov A.M., Pisarevsky S.A., Kamo S., 2019. A new Ectasian event of basitic magmatism in the southern Siberian craton. Doklady Earth Sciences 486 (1), 507–511. https://doi.org/10.1134/S1028334X19050222.
14. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Pisarevsky S.A., Ernst R.E., Stanevich A.M., 2016. The Mesoproterozoic mantle plume beneath the northern part of the Siberian craton. Russian Geology and Geophysics 57 (5), 672–686. https://doi.org/10.1016/j.rgg.2016.04.004.
15. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., Ponomarchuk V.A., 2007. Signature of Precambrian extension events in the southern Siberian craton. Russian Geology and Geophysics 48 (1), 17– 31. https://doi.org/10.1016/j.rgg.2006.12.001.
16. Gladkochub D.P., Mazukabzov A.M., Stanevich A.M., Donskaya T.V., Motova Z.L., Vanin V.A., 2014. Precambrian sedimentation in the Urik-Iya graben, Southern Siberian craton: Main stages and tectonic settings. Geotectonics 48 (5), 359–370. https://doi.org/10.1134/S0016852114050033.
17. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A., 2010b. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Research 183 (3), 660–668. https://doi.org/10.1016/j.precamres.2010.02.023.
18. Gladkochub D., Pisarevsky S., Donskaya T., Natapov L., Mazukabzov A., Stanevich A., Sklyarov E., 2006. Siberian craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169–174.
19. Gladkochub D.P., Pisarevsky S.A., Ernst R., Donskaya T.V., Soderlund U., Mazukabzov A.M., Hanes J., 2010a. Large Igneous Province of about 1750 Ma in the Siberian craton. Doklady Earth Sciences 430 (2), 168–171. https://doi.org/10.1134/S1028334X10020042.
20. Hou G., Santosh M., Qian X., Lister G.S., Li J., 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Research 14 (3), 395–409. https://doi.org/10.1016/j.gr.2008.01.010.
21. Larin A.M., 2011. Rapakivi Granites and Associated Rocks. Nauka, Saint Petersburg, 402 p. (in Russian).
22. Larin A.M., 2014. Ulkan-Dzhugdzhur ore-bearing anorthosite-rapakivi granite-peralkaline granite association, Siberian craton: Age, tectonic setting, sources, and metallogeny. Geology of Ore Deposits 56 (4), 257–280. https://doi.org/10.1134/S1075701514040047.
23. Larin A.M., Kotov A.B., Velikoslavinskii S.D., Sal'nikova E.B., Kovach V.P., 2012. Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: Sources and geodynamic environments. Petrology 20 (3), 218– 239. https://doi.org/10.1134/S0869591112030034.
24. Ludwig K.R., 2003. Isoplot/EX 3. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, vol. 4, 77 p.
25. Malyshev S.V., Pasenko A.M., Ivanov A.V., Gladkochub D.P., Savatenkov V.M., Meffre S., Abersteiner A., Kamenetsky V.S., 2018. Geodynamic significance of the Mesoproterozoic magmatism of the Udzha paleo-rift (northern Siberian craton) based on U-Pb geochronology and paleomagnetic data. Minerals 8 (12), 555. https://doi.org/10.3390/min8120555.
26. Mekhonoshin A.S., Ernst R., Soderlund U., Hamilton M.A., Kolotilina T.B., Izokh A.E., Polyakov G.V., Tolstykh N.D., 2016. Relationship between platinum-bearing ultramafic-mafic intrusions and large igneous provinces (exemplified by the Siberian craton). Russian Geology and Geophysics 57 (5), 822–833. https://doi.org/10.1016/j.rgg.2015.09.020.
27. Nozhkin A.D., Turkina O.M., Bayanova T.B., 2009. Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian craton: Petrogeochemical features and U-Pb geochronological and Sm-Nd isotopic data. Doklady Earth Sciences 428 (1), 1192–1197. https://doi.org/10.1134/S1028334X09070344.
28. Nozhkin A.D., Turkina O.M., Likhanov I.I., Dmitrieva N.V., 2016. Late Paleoproterozoic volcanic associations in the southwestern Siberian craton (Angara-Kan block). Russian Geology and Geophysics 57 (2), 247–264. https://doi.org/10.1016/j.rgg.2016.02.003.
29. Peterson T.D., Scott J.M.J., Le Cheminant A.N., Jerson C.W., Pehrsson S.J., 2015. The Kivalliq Igneous Suite: anorogenic bimodal magmatism at 1.75 Ga in the western Churchill Province, Canada. Precambrian Research 262, 101‒119. https://doi.org/10.1016/j.precamres.2015.02.019.
30. Priyatkina N., Collins W.J., Khudoley A., Zastrozhnov D., Ershova V., Chamberlain K., Shatsillo A., Proskurnin V., 2017. The Proterozoic evolution of northern Siberian craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. International Geology Review 59 (13), 1632–1656. https://doi.org/10.1080/00206814.2017.1289341.
31. Rainbird R.H., Stern R.A., Khudoley A.K., Kropachev A.P., Heaman L.M., Sukhorukov V.I., 1998. U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection. Earth and Planetary Science Letters 164 (3–4), 409–420. https://doi.org/10.1016/S0012-821X(98)00222-2.
32. Sauders A., 2005. Large igneous provinces: origin and environmental consequences. Elements 1 (5), 259–263. https:// doi.org/10.2113/gselements.1.5.259.
33. Söderlund U., Johansson L., 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry, Geophysics, Geosystems 3 (2), 1–7. https://doi.org/10.1029/2001GC000212.
34. Sryvtsev N.A., 1986. Structure and geochronometry of the Akitkan Group of the Western Baikal region. In: O.V. Grabkin (Ed.), Problems of stratigraphy of Early Precambrian of Middle Siberia. Nauka, Moscow, p. 50‒61 (in Russian).
35. Stacey J.S., Kramers J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.
36. Sukhorukov V.P., Gladkochub D.P., Turkina O.M., 2018. The first finding of sapphirine in granulites of the Angara–Kan block: evidence of ultra-high temperature metamorphism in the SW Siberian craton. Doklady Earth Sciences 479 (2), 443–447. https://doi.org/10.1134/S1028334X18040190.
37. Turkina O.M., Berezhnaya N.G., Lepekhina E.N., Kapitonov I.N., 2012. Age of mafic granulites from the Early Precambrian metamorphic complex of the Angara-Kan Terrain (Southwestern Siberian craton): U-Pb and Lu-Hf isotope and REE composition of zircon. Doklady Earth Sciences 445 (2), 986–993. https://doi.org/10.1134/S1028334X12080 090.
38. Turkina O.M., Bibikova E.V., Nozhkin A.D., 2003. Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian craton. Doklady Earth Sciences 389 (2), 159–163.
39. Turkina O.M., Nozhkin A.D., Bayanova T.B., 2006. Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14 (3), 262–283. https://doi.org/10.1134/S08695 91106030040.
40. Veselovskiy R.V., Petrov P.Yu., Karpenko S.F., Kostitsyn Yu.A., Pavlov V.E., 2006. New paleomagnetic and isotopic data on the Mesoproterozoic igneous complex on the northern slope of the Anabar massif. Doklady Earth Sciences 411 (8), 1190–1194. https://doi.org/10.1134/S1028334X06080058.
41. Wingate M.T.D., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Konstantinov K.M., Mazukabzov A.M., Stanevich A.M., 2009. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Research 170 (3‒4), 256–266. https://doi.org/10.1016/j.precamres.2009.01.004.
42. Youbi N., Kouyate D., Soderlund Ulf., Ernst R.E., Soulaimani A., Hafid A., Ikenne M., El Bahat A., Bertrand H., Rkha Chaham K., Ben Abbou M., Mortaji A., El Ghorfi M., Zouhair M., El Janati M., 2013. The 1750 Ma magmatic event of the West African craton (Anti-Atlas, Morocco). Precambrian Research 236, 106–123. https://doi.org/10.1016/j.precamres.2013.07.003.
43. Zhang S.H., Li Z.-X., Evans D.A.D., Wu H., Li H., Dong J., 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353–354, 145–155. https://doi.org/10.1016/j.epsl.2012.07.034.
44. Zhao G., Sun M., Wilde S.A., Li S., 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. EarthScience Reviews 67 (1–2), 91–123. https://doi.org/10.1016/j.earscirev.2004.02.003.
Review
For citations:
Gladkochub D.P., Donskaya T.V., Ernst R.E., Söderlund U., Mazukabzov A.M., Shokhonova M.N. Enlargement of the area of the Timpton Large Igneous Province (ca. 1.75 ga) of the Siberian craton. Geodynamics & Tectonophysics. 2019;10(4):829-839. (In Russ.) https://doi.org/10.5800/GT-2019-10-4-0444