Preview

Geodynamics & Tectonophysics

Advanced search

Correlation between the mantle and heterochronous crustal materials in the composition of Transbaikalia A-type granitoides: petrological and geodynamical implications

https://doi.org/10.5800/GT-2019-10-3-0441

Abstract

Late Paleozoic and Early Mesozoic alkaline A-type granitoids (anhydrous, alkaline, moderately aluminous, ferruginous) are widely distributed in the structures of the Central Asian Fold Belt. In Northern Mongolia and Transbaikalia, there are hundreds of massifs that formed from the end of the Permian to the Middle Jurassic inclusive. These massifs are composed of alkaline granites, alkaline and alkali-feldspar syenites, and located within crustal blocks (terranes) of different ages and origins. New geochemical data obtained for the Kruchininsky, Sherbakhtinsky, Shabartay and Khamney massifs, as well as earlier published materials (Bryansk and Kharitonovo plutons), demonstrate that despite the general petrogeochemical similarity of the main rock types composing these plutons, their isotopic composition (Nd) differs significantly. Our studies suggest that the isotopic composition of Transbaikalia A-type granitoids is caused, on the one hand, by the crust permeability for mantle magmas and, on the other hand, by the material heterogeneity of the crustal magma sources themselves, varying from the Early Precambrian crystalline blocks to ‘young’ island-arc terranes.

About the Authors

A. A. Tsygankov
Geological Institute, Siberian Branch of RAS; Buryat State University
Russian Federation

Andrei A. Tsygankov - Doctor of Geology and Mineralogy, Director.

6a Sakhyanova street, Ulan-Ude 670047; 24a Smolin street, Ulan-Ude 670000.



V. B. Khubanov
Geological Institute, Siberian Branch of RAS; Buryat State University
Russian Federation

Valentin B. Khubanov - Candidate of Geology and Mineralogy, Senior Researcher.

6a Sakhyanova street, Ulan-Ude 670047; 24a Smolin street, Ulan-Ude 670000.



G. N. Burmakina
Geological Institute, Siberian Branch of RAS
Russian Federation

Galina N. Burmakina - Candidate of Geology and Mineralogy, Researcher.

6a Sakhyanova street, Ulan-Ude 670047.



A. L. Elbaev
Geological Institute, Siberian Branch of RAS
Russian Federation

Aleksei L. Elbaev - Candidate of Geology and Mineralogy, Researcher.

6a Sakhyanova street, Ulan-Ude 670047.



V. V. Burdukovsky
Geological Institute, Siberian Branch of RAS
Russian Federation

Valeriy V. Burdukovsky - Post-Graduate Student.

6a Sakhyanova street, Ulan-Ude 670047.



References

1. Barbarin B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46 (3), 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1.

2. Bulgatov A.N., Gordienko I.V., 1999. Terrains of the Baikal mountain range and the location of gold deposits. Geology of Ore Deposits 41 (3), 204–213.

3. Chen G.N., Grapes R., 2007. Granite Genesis: In Situ Melting and Crustal Evolution. Springer, Dordrecht, 278 p. https://doi.org/10.1007/978-1-4020-5891-2.

4. Collins W.J., Beams S.D., White A.J.R., Chappell B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80 (2), 189–200. https://doi.org/10.1007/BF00374895.

5. Creaser R.A., Price R.C., Wormald R.J., 1991. A-type granites revisited: assessment of a residual-source model. Geology 19 (2), 163–166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2.

6. Eby G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26 (1–2), 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z.

7. Eby G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20 (7), 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2.

8. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.

9. Frost C.D., Frost B.R., 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology 52 (1), 39–53. https://doi.org/10.1093/petrology/egq070.

10. Gordienko I.V., Kuzmin M.I., 1999. Geodynamics and metallogeny of the Mongolo-Transbaikalian region. Geologiya i Geofizika (Russian Geology and Geophysics) 40 (11), 1545–1562.

11. Grebennikov A.V., 2014. A-type granites and related rocks: Petrogenesis and classification. Russian Geology and Geophysics 55 (9), 1074–1086. https://doi.org/10.1016/j.rgg.2014.08.003.

12. Jahn B.M., Litvinovsky B.A., Zanvilevich A.N., Reichow M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113 (3–4), 521–539. https://doi.org/10.1016/j.lithos.2009.06.015.

13. Khromova E.A., 2008. Material composition and isotope age of the Upper Paleozoic granitoids of the Dzhida Paleozoides Zone (on the example of the Shabartay massif). In: Granites and Earth evolution: geodynamic position, petrogenesis and ore content of granitoid batholiths. Proceedings of the 1st International geological conference. BSC SB RAS Publishing House, Ulan-Ude, p. 399–400 (in Russian)

14. Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U-Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.

15. Khubanov V.B., Vrublevskaya T.T., Tsyrenov B.T., Tsygankov A.A., 2015. Formation of the trachybasalt–trachyte bimodal series of the Malo-Khamardaban volcanotectonic complex, southwestern Transbaikalia: Role of fractional crystallization and magma mixing. Petrology 23 (5), 451–479. https://doi.org/10.1134/S0869591115040037.

16. Kruk N.N., Rudnev S.N., Vladimirov A.G., Shokalsky S.P., Kovach V.P., Serov P.A., Volkova N.I., 2011. Early–Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. Journal of Asian Earth Sciences 42 (5), 928–948. https://doi.org/10.1016/j.jseaes.2010.12.008.

17. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., 1997. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist 35 (1), 219–246.

18. Liégeois J.P., Black R., 1987. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). In: J.G. Fitton, B.G.J. Upton (Eds.), Alkaline igneous rocks. Geological Society, London, Special Publications, vol. 30, p. 381–401. https://doi.org/10.1144/GSL.SP.1987.030.01.18.

19. Litvinovsky B.A., Jahn B.M., Zanvilevich A.N., Saunders A., Poulain S., Kuzmin D.V., Reichow M.K., Titov A.V., 2002. Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chemical Geology 189 (1–2), 105–133. https://doi.org/10.1016/S0009-2541(02)00142-0.

20. Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be'eri-Shlevin Y., 2011. Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125 (3–4), 845–874. https://doi.org/10.1016/j.lithos.2011.04.007.

21. Loiselle M.C., Wones D.R., 1979. Characteristics and origin of anorogenic granites. In: Abstracts of papers to be presented at the annual meetings of the Geological Society of America and Associated Societies, Vol. 11, No. 7. San Diego, California, p. 468.

22. Metelkin D.V., Gordienko I.V., Zhao X.X., 2004. Paleomagnetism of Early Cretaceous volcanic rocks from Transbaikalia: argument for Mesozoic strike-slip motions in Central Asian structure. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (12), 1349–1363.

23. Metelkin D.V., Vernikovsky V.A., Kazansky A.Y., 2012. Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions. Russian Geology and Geophysics 53 (7), 675–688. https://doi.org/10.1016/j.rgg.2012.05.006.

24. Patiño Douce A.E., 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25 (8), 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2.

25. Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, Impact Rock-Assemblages, 2009. VSEGEI Press, Saint Petersburg, 200 p. (in Russian)

26. Reichow M.K., Litvinovsky B.A., Parrish R.R., Saunders A.D., 2010. Multi-stage emplacement of alkaline and peralkaline syenite–granite suites in the Mongolian–Transbaikalian belt, Russia: Evidence from U-Pb geochronology and whole rock geochemistry. Chemical Geology 273 (1–2), 120–135. https://doi.org/10.1016/j.chemgeo.2010.02.017.

27. Reznitsky L.Z., Barash I.G., Kovach V.P., Belichenko V.G., Sal’nikova E.B., Kotov A.B., 2005. Paleozoic intrusive magmatism of the Dzhida terrane – new geochronological and Nd isotope data. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 3, Vol. 2. IEC SB RAS, Irkutsk, p. 77–80 (in Russian)

28. Rudnick R.L., Gao S., 2003. Composition of the continental crust. In: H.D. Holland, K.K. Turekian (Eds.), Treatise on geochemistry, Vol. 3. Elsevier, Oxford, p. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

29. Ruzhentsev S.V., Minina O.R., Nekrasov G.E., Aristov V.A., Golionko B.G., Doronina N.A., Lykhin D.A., 2012. The Baikal-Vitim fold system: structure and geodynamic evolution. Geotectonics 46 (2), 87–110. https://doi.org/10.1134/S0016852112020033.

30. Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the ocean basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

31. Sylvester P.J., 1989. Post-collisional alkaline granites. The Journal of Geology 97 (3), 261–280. https://doi.org/10.1086/629302.

32. Tsygankov A.A., 2014. Late Paleozoic granitoids in Western Transbaikalia: sequence of formation, sources of magmas, and geodynamics. Russian Geology and Geophysics 55 (2), 153–176. https://doi.org/10.1016/j.rgg.2014.01.004.

33. Tsygankov A.A., Burmakina G.N., Khubanov V.B., Buyantuev M.D., 2017. Geodynamics of Late Paleozoic batholith-forming processes in Western Transbaikalia. Petrology 25 (4), 396–418. https://doi.org/10.1134/S0869591117030043.

34. Tsygankov A.A., Dugdanova E.E., Burmakina G.N., Udoratina O.V., Khubanov V.B., 2015. Alkaline granitoid magmatism in Western Transbaikalia: geochronology, rock composition, geodynamics. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 13. IEC SB RAS, Irkutsk, p. 249–251 (in Russian)

35. Tsygankov A.A., Khubanov V.B., Travin A.V., Lepekhina E.N., Burmakina G.N., Antsiferova T.N., Udoratina O.V., 2016. Late Paleozoic gabbroids of Western Transbaikalia: U-Pb and Ar-Ar isotopic ages, composition, and petrogenesis. Russian Geology and Geophysics 57 (5), 790–808. https://doi.org/10.1016/j.rgg.2015.09.019.

36. Tsygankov A.A., Litvinovsky B.A., Jhan B.M., Reichow M.K., Liu D.Y., Larionov A.N., Presnykov S.L., Lepekhina Ye.N., Sergeev S.A., 2010. Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Russian Geology and Geophysics 51 (9), 972–994. https://doi.org/10.1016/j.rgg.2010.08.007.

37. Tsygankov A.A., Matukov D.I., Berezhnaya N.G., Larionov A.N., Posokhov V.F., Tsyrenov B.Ts., Khromov A.A., Sergeev S.A., 2007. Late Paleozoic granitoids of Western Transbaikalia: magma sources and stages of formation. Russian Geology and Geophysics 48 (1), 120–140. https://doi.org/10.1016/j.rgg.2006.12.011.

38. Turner S.P., Foden J.D., Morrison R.S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an exemple from the Pathway ridge, South Australia. Lithos 28 (2), 151–179 https://doi.org/10.1016/0024-4937(92)90029-X.

39. Vorontsov A.A., Yarmolyuk V.V., 2007. The evolution of volcanism in the Tugnui-Khilok sector of the Western Transbaikalia rift area in the Late Mesozoic and Cenozoic. Journal of Volcanology and Seismology 1 (4), 213–236. https://doi.org/10.1134/S074204630704001X.

40. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407–419. https://doi.org/10.1007/BF00402202.

41. White A.J.R., 1979. Sources of granite magmas. In: Abstracts of papers to be presented at the annual meetings of the Geological Society of America and Associated Societies, Vol. 11, No. 7. San Diego, California, p. 539.

42. Wu F.Y., Sun D.Y., Li H.M., Jahn B.M., Wilde S.A., 2002. A-type granites in Northeaster China: age and geochemical constraints on their petrogenesis. Chemical Geology 187 (1–2), 143–173 https://doi.org/10.1016/S0009-2541(02)00018-9.

43. Yarmolyuk V.V., Budnikov S.V., Kovalenko V.I., Antipin V.S., Goreglyad A.V., Sal’nikova E.B., Kotov A.B., Kozakov I.A., Kovach V.P., Yakovleva Z.S., Berezhnaya N.G., 1997. Geochronology and geodynamic setting of the Angara-Vitim batholith. Petrology 5 (5), 401–414.

44. Yarmolyuk V.V., Ivanov V.G., Kovalenko V.I., 1998. Sources of intraplate magmatism of Western Transbaikalia in the Late Mesozoic – Cenozoic: trace-element and isotope data. Petrology 6 (2), 101–123.

45. Yarmolyuk V.V., Kuzmin M.I., Ernst R.E., 2014. Intraplate geodynamics and magmatism in the evolution of Central Asian orogenic belt. Journal of Asian Earth Sciences 93, 158–179. https://doi.org/10.1016/j.jseaes.2014.07.004.

46. Yarmolyuk V.V., Kuzmin M.I., Kozlovsky A.M., 2013. Late Paleozoic – Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 21 (2), 101–126. https://doi.org/10.1134/S0869591113010062.

47. Zanvilevich A.N., Litvinovsky B.A., Wickham S.M., Bea F., 1995. Genesis of alkaline and peralkaline syenite-granite series: the Kharitonovo pluton (Transbaikalia, Russia). The Journal of Geology 103 (2), 127–145. https://doi.org/10.1086/629732.

48. Zonenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Plate Tectonics of the USSR Territory. Vol. 1. Nedra, Moscow, 326 p. (in Russian)


Review

For citations:


Tsygankov A.A., Khubanov V.B., Burmakina G.N., Elbaev A.L., Burdukovsky V.V. Correlation between the mantle and heterochronous crustal materials in the composition of Transbaikalia A-type granitoides: petrological and geodynamical implications. Geodynamics & Tectonophysics. 2019;10(3):779-799. (In Russ.) https://doi.org/10.5800/GT-2019-10-3-0441

Views: 908


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)