The analysis of spatial distributions, origins of caldera-forming eruptions with basaltic-andesitic magma compositions, and genesis of Miocene ignimbrites of the Eastern volcanic belt, Kamchatka
https://doi.org/10.5800/GT-2019-10-3-0443
Abstract
Based on the statistical data of the Global Volcanism Program of the Smithsonian Institution and published materials, we present a comparative analysis of caldera-forming eruptions on global scale. The geodynamic settings and genesis of the caldera-forming eruptions with basaltic-andesitic magma compositions are described. The origin of the majority of mafic ignimbrites was related with external water. Such ignimbrites were generated in a submarine environment or with a contact with water. The newly obtained data, paleogeodynamic reconstruction and geological mapping of Miocene mafic ignimbrites of the Eastern volcanic belt (EVB) of Kamchatka confirm their genesis in costal-marine environment. These new data show significance of paleoreconstructions in studies of paleo-volcanoes and relief-forming pyroclastic rocks.
About the Authors
O. V. Bergal-KuvikasRussian Federation
Olga V. Bergal-Kuvikas - PhD, Senior Researcher.
9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006; 35 Staromonetnyi per., building 2, Moscow 109017.
A. N. Rogozin
Russian Federation
Aleksei N. Rogozin – Researcher.
9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006.
E. S. Klyapitsky
Russian Federation
Evgenii S. Klyapitsky - Junior Researcher.
9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006.
References
1. Abbot C.G., Fowle F.E., 1913. Volcanoes and climate. Smithsonian Miscellaneous Collections 60 (29), 1–24. Available from: https://repository.si.edu/bitstream/handle/10088/23463/SMC_60_Abbot_1913_29_1-24.pdf.
2. Aliskerov A.A., 1980. Mineralization of Shallow Magma Chamber (Avachinsko-Kethoiskaya uplift zone). Nauka, Moscow, 94 p. (in Russian)
3. Avdeiko G.P., Bergal-Kuvikas O.V., 2015. The geodynamic conditions for the generation of adakites and Nb-rich basalts (NEAB) in Kamchatka. Journal of Volcanology and Seismology 9 (5), 295–306. https://doi.org/10.1134/S0742046315050024.
4. Avdeiko G.P., Saveliev D.P., Popruzhenko S.V., Palueva A.A., 2003. Principle of uniformitarianism: criteria for paleotectonic reconstructions by the example of the Kurile-Kamchatka region. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences (1), 32–60 (in Russian)
5. Avdeiko G.P., Savelyev D.P., Palueva A.A., Popruzhenko S.V., 2007. Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: J. Eichelberger, E. Gordeev, P. Izbekov, M. Kasahara, J. Lees (Eds.), Volcanism and subduction: The Kamchatka Region. Geophysical Monograph Series, vol. 172, p. 37–55. https://doi.org/10.1029/172GM04.
6. Beaumais A., Bertrand H., Chazot G., Dosso L., Robin C., 2016. Temporal magma source changes at Gaua volcano, Vanuatu island arc. Journal of Volcanology and Geothermal Research 322, 30–47. https://doi.org/10.1016/j.jvolgeores.2016.02.026.
7. Bindeman I.N., 2006. Secret life of supervolcanoes. Khimiya i Khimiki. V mire Nauki (Chemistry and chemists. In world of science) (10), 66–86 (in Russian)
8. Bindeman I.N., Leonov V.L., Izbekov P.E., Ponomareva V.V., Watts K.E., Shipley N.K., Schmitt A.K., 2010. Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. Journal of Volcanology and Geothermal Research 189 (1), 57–80. https://doi.org/10.1016/j.jvolgeores.2009.10.009.
9. Bindeman I.N., Simakin A.G., 2014. Rhyolites – Hard to produce, but easy to recycle and sequester: Integrating microgeochemical observations and numerical models. Geosphere 10 (5), 930–957. https://doi.org/10.1130/GES00969.1.
10. Braitseva O.A., Melekestsev I.V., 1991. Eruptive history of Karymsky volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating. Bulletin of Volcanology 53 (3), 195–206. https://doi.org/10.1007/BF00301230.
11. Cas R.A.F., Simmons J.M., 2018. Why deep-water eruptions are so different from subaerial eruptions. Frontiers in Earth Science 6, 198. https://doi.org/10.3389/feart.2018.00198.
12. Cas R.A., Wright J.V., 1991. Subaqueous pyroclastic flows and ignimbrites: an assessment. Bulletin of Volcanology 53 (5), 357–380. https://doi.org/10.1007/BF00280227.
13. Cashman K.V., Giordano G., 2014. Calderas and magma reservoirs. Journal of Volcanology and Geothermal Research 288, 28–45. https://doi.org/10.1016/j.jvolgeores.2014.09.007.
14. Chesner C., Rose W.I., Deino A.L., Drake R., Westgate J.A., 1991. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology 19 (3), 200–203. https://doi.org/10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2.
15. De Rita D., Giordano G., Esposito A., Fabbri M., Rodani S., 2002. Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy). Journal of Volcanology and Geothermal Research, 118 (1), 77–98. https://doi.org/10.1016/S0377-0273(02)00251-2.
16. Demonterova E.I., Ivanov A.V., Karmanov N.S., 2009. Basaltic ignimbrite-like rocks on Saikhan Volcano, northeastern Khangai, Mongolia: Mineralogic and geochemical evidence. Journal of Volcanology and Seismology 3 (4), 260–268. https://doi.org/10.1134/S0742046309040034.
17. Druitt T.H., Sparks R.S.J., 1984. On the formation of calderas during ignimbrite eruptions. Nature 310 (5979), 679–681. https://doi.org/10.1038/310679a0.
18. Egorov O.N., 2009. Structure formation and magma genesis under upper mantle plumes in volcanic belt between ocean-continent center of subaerial volcanism. IPE RAS, Moscow (in Russian) Available from: http://repo.kscnet.ru/id/eprint/2613.
19. Eichelberger J.C., Izbekov P.E., 2000. Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mt Katmai, Alaska. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 358 (1770), 1465–1485. https://doi.org/10.1098/rsta.2000.0599.
20. Fedorov P.I., Kovalenko D.V., Bayanova T.B., Serov P.A., 2008. Early Cenozoic magmatism in the continental margin of Kamchatka. Petrology 16 (3), 261–278. https://doi.org/10.1134/S086959110803003X.
21. Fernández W.P., 2007. Basaltic Plinian and Violent Surtseyan Eruptions from the Masaya Caldera Complex, Nicaragua. Doctoral dissertation, Universitätsbibliothek Kiel. 194 p. Available from: https://macau.uni-kiel.de/receive/dissertation_diss_00002063.
22. Freundt A., 2003. Entrance of hot pyroclastic flows into the sea: experimental observations. Bulletin of Volcanology 65 (2–3), 144–164. https://doi.org/10.1007/s00445-002-0250-1.
23. Freundt A., Schmincke H.U., 1995. Eruption and emplacement of a basaltic welded ignimbrite during caldera formation on Gran Canaria. Bulletin of Volcanology 56 (8), 640–659. https://doi.org/10.1007/BF00301468.
24. Geological Map of Russian Federation, 2000. Scale 1:200000. Sothern Kamchatka Series. Lists N-57-XXVII, N-57-XXXIII. Explanatory Note. VSEGEI, Moscow, 302 p. (in Russian)
25. Gertisser R., Self S., Thomas L.E., Handley H.K., Van Calsteren P., Wolff J.A., 2011. Processes and timescales of magma genesis and differentiation leading to the great Tambora eruption in 1815. Journal of Petrology 53 (2), 271–297. https://doi.org/10.1093/petrology/egr062.
26. Gladenkov A.Y., Gladenkov Y.B., 2004. Onset of connections between the Pacific and Arctic Oceans through the Bering Strait in the Neogene. Stratigraphy and Geological Correlation 12 (2), 175–187.
27. Gladenkov Y.B., Sinekova V.N., Gladenkov U.B., 1990. Mollusks and climatic optimum during the Miocene on Kamchatka. Moscow, Nauka, 453 p. (in Russian)
28. Gleckler P.J., Wigley T.M.L., Santer B.D., Gregory J.M., Achuta Rao K., Taylor K.E., 2006. Volcanoes and climate: Krakatoa's signature persists in the ocean Nature 439 (7077), 675. https://doi.org/10.1038/439675a.
29. Global Volcanism Program, 2017. Database of Smithsonian Institution. Washington. Available from: http://volcano.si.edu/reports_weekly.cfm.
30. Gudmundsson A., 2015. Collapse-driven large eruptions. Journal of Volcanology and Geothermal Research 304, 1–10. https://doi.org/10.1016/j.jvolgeores.2015.07.033.
31. Gudmundsson A., 2016. The mechanics of large volcanic eruptions. Earth-Science Reviews 163, 72–93. https://doi.org/10.1016/j.earscirev.2016.10.003.
32. Gutmann J.T., 2002. Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. Journal of Volcanology and Geothermal Research 113 (1), 345–356. https://doi.org/10.1016/S0377-0273(01)00265-7.
33. Haq B.U., Hardenbol J., Vail P.R., 1987. The new chronostratigraphic basis of Cenozoic and Mesozoic sea level cycles. In: Special Publication, Cushman Foundation for Foraminiferal Research, vol. 24, p. 7–13.
34. Hughes G.R., Mahood G.A., 2008. Tectonic controls on the nature of large silicic calderas in volcanic arcs. Geology 36 (8), 627–630. https://doi.org/10.1130/G24796A.1.
35. Huppert H.E., Sparks R.S.J., 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29 (3), 599–624. https://doi.org/10.1093/petrology/29.3.599.
36. Kuvikas O.V., 2008. Reconstruction of caldera forming eruption Pra-Karumsky volcano, Kamchatka (7800 BP). In: All-Russian conference for young sciences. Institute of the Earth’s Crust, Irkutsk, p. 168–170 (in Russian)
37. Lander A.V., Shapiro M.N., 2007. The origin of the modern Kamchatka subduction zone. In: J. Eichelberger, E. Gordeev, P. Izbekov, M. Kasahara, J. Lees (Eds.), Volcanism and subduction: the Kamchatka region. Geophysical Monograph Series, vol. 172, p. 57–64. https://doi.org/10.1029/172GM05.
38. Leonov V.L., Bindeman I.N., Rogozin A.N., 2008. New Ar-Ar dating of Kamchatkan ignimbrites. In: Materials of conference for Volcanologist day. Institute of Volcanology and Seismology of FEB RAS, Petropavlovsk-Kamchatsky, p. 187–197 (in Russian) Available from: http://www.kscnet.ru/ivs/publication/volc_day/2008/art23.pdf.
39. Leonov V.L., Bindeman I.N., Rogozin A.N., Kuvikas O.V., Kliapitsky E.S., 2011. Detection of new caldera on Kamchatka: boundary, age, caldera-forming deposits, unsolved problem. In: Volcanism and related processes. Materials of conference for Volcanologist day. Institute of Volcanology and Seismology of FEB RAS, Petropavlovsk-Kamchatsky, p. 53–56 (in Russian) Available from: http://repo.kscnet.ru/3007/1/Leonov%20et%20al.,%202011.pdf.
40. Leonov V.L., Grib E.N., 2004. Structural Positions and Volcanism of Quaternary Calderas of Kamchatka. Dal’nauka, Vladivostok, 189 p. (in Russian)
41. Leonov V.L., Rogozin A.N., 2007. Karymshina, a giant supervolcano caldera in Kamchatka: Boundaries, structure, volume of pyroclastics. Journal of Volcanology and Seismology 1 (5), 296–309. https://doi.org/10.1134/S0742046307050028.
42. Lind E.M., Wastegård S., 2011. Tephra horizons contemporary with short Early Holocene climate fluctuations: new results from the Faroe Islands. Quaternary International 246 (1–2), 157–167. https://doi.org/10.1016/j.quaint.2011.05.014.
43. Lipman P.W., 1984. The roots of ash flow calderas in western North America: windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth 89 (B10), 8801–8841. https://doi.org/10.1029/JB089iB10p08801.
44. Lohmar S., Robin C., Gourgaud A., Clavero J., angel Parada M., Moreno H., Ersoy O., Lopez-Escobar L., Naranjo J.A., 2007. Evidence of magma-water interaction during the 13,800 years BP explosive cycle of the Licán Ignimbrite, Villarrica volcano (Southern Chile). Andean Geology 34 (2), 233–248. https://doi.org/10.5027/andgeoV34n2-a04.
45. Map of Modern Tectonics of USSR and Adjacent Area, 1977. Scale 1:5000000. VSEGEI, Leningrad (in Russian)
46. Map of Principal Trends in Paleotopography Development on the USSR Territory, 1983. Scale 1:10000000. Paleomorphological Atlas (in Russian)
47. Martí J., Geyer A., Folch A., Gottsmann J., 2008. A review on collapse caldera modelling. In: J. Gottsmann, J. Martí (Eds.), Caldera volcanism: analysis, modelling and response. Developments in volcanology, vol. 10, p. 233–283. https://doi.org/10.1016/S1871-644X(07)00006-X.
48. Melekestsev I.V., 1974. Main stages of formation modern relief of Kurile-Kamchatka region. In: O.M. Adamenko, S.A. Arkhipov, I.V. Luchitskiy, V.A. Nikolayev, N.A. Florensov, G.I. Khudyakov (Eds.), The history of the relief development of Siberia and the Far East. Kamchatka, Kurile and Komandor islands. Nauka, Moscow, p. 337–345 (in Russian)
49. Miller C.F., Wark D.A., 2008. Supervolcanoes and their explosive supereruptions. Elements 4 (1), 11–15. https://doi.org/10.2113/GSELEMENTS.4.1.11.
50. Oppenheimer C., 2003. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography 27 (27), 230–259. https://doi.org/10.1191/0309133303pp379ra.
51. Rachmat H., Rosana M.F., Wirakusumah A.D., Jabbar G.A., 2016. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows. Indonesian Journal on Geoscience 3 (2), 107–126. https://doi.org/10.17014/ijog.3.2.107-126.
52. Robin C., Eissen J.P., Monzier M., 1993. Giant tuff cone and 12-km-wide associated caldera at Ambrym Volcano (Vanuatu, New Hebrides Arc). Journal of Volcanology and Geothermal Research 55 (3–4), 225–238. https://doi.org/10.1016/0377-0273(93)90039-T.
53. Robin C., Eissen J.P., Monzier M., 1994. Ignimbrites of basaltic andesite and andesite compositions from Tanna, New Hebrides Arc. Bulletin of Volcanology 56 (1), 10–22. https://doi.org/10.1007/BF00279725.
54. Robin C., Eissen J.P., Monzier M., 1995. Mafic pyroclastic flows at Santa Maria (Gaua) volcano, Vanuatu: the caldera formation problem in mainly mafic island arc volcanoes. Terra Nova 7 (4), 436–443. https://doi.org/10.1111/j.1365-3121.1995.tb00539.x.
55. Rogozin A.N., Leonov V.L., Kuvikas O.V., 2011. Unusial ignimbrites of Verhneavachinkaya caldera (Kamchatka): stratigraphy columns and geochemical characteristics. In: Volcanism and geodynamic. Materials of V All-Russian simposium of volcanology and paleovolcanology. Institute of Geology and Geochemistry UB RAS, Yekaterinburg, p. 234–237 (in Russian)
56. Schmidt R., van den Bogaard C., Merkt J., Müller J., 2002. A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quaternary International 88 (1), 45–56. https://doi.org/10.1016/S1040-6182(01)00072-6.
57. Shanster A.E., 1974. Stage of paleo relief on Kamchatka. In: O.M. Adamenko, S.A. Arkhipov, I.V. Luchitskiy, V.A. Nikolayev, N.A. Florensov, G.I. Khudyakov (Eds.), The history of the relief development of Siberia and the Far East. Kamchatka, Kurile and Komandor islands. Nauka, Moscow, p. 58–82 (in Russian)
58. Shantser A.E., Kraevaya T.S., 1980. Formation Series of the Terrestrial Volcanic Belt (the Late Cenozoic of Kamchatka as an Example). Nauka, Moscow, 164 p. (in Russian)
59. Sheth H.C., Ray J.S., Bhutani R., Kumar A., Smitha R.S., 2009. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean. Bulletin of Volcanology 71 (9), 1021–1039. https://doi.org/10.1007/s00445-009-0280-z.
60. Simkin T., Fiske R.S., 1983. Krakatau 1883. Earthquake Information Bulletin (USGS) 15 (4), 128–133.
61. Sparks R.S.J., Sigurdsson H., Wilson L., 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267 (5609), 315–318. https://doi.org/10.1038/267315a0.
62. Stern R.J., 1979. On the origin of andesite in the northern Mariana island arc: Implications from Agrigan. Contributions to Mineralogy and Petrology 68 (2), 207–219. https://doi.org/10.1007/BF00371901.
63. Stern R.J., 2002. Subduction zones. Reviews of Geophysics 40 (4), 1012. https://doi.org/10.1029/2001RG000108.
64. Walker G.P., 1988. Three Hawaiian calderas: an origin through loading by shallow intrusions? Journal of Geophysical Research: Solid Earth 93 (B12), 14773–14784. https://doi.org/10.1029/JB093iB12p14773.
65. Walker J.A., Williams S.N., Kalamarides R.I., Feigenson M.D., 1993. Shallow open-system evolution of basaltic magma beneath a subduction zone volcano: the Masaya Caldera Complex, Nicaragua. Journal of Volcanology and Geothermal Research 56 (4), 379–400. https://doi.org/10.1016/0377-0273(93)90004-B.
66. Williams H., 1941. Calderas and their origin. Bulletin of the Department of Geology of the University of California 25 (6), 239–346.
67. Witter J.B., Self S., 2007. The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release. Bulletin of Volcanology 69 (3), 301–318. https://doi.org/10.1007/s00445-006-0075-4.
68. Zavaritsky A.N., 1955. Volcanoes of Kamchatka. USSR Academy of Sciences Publishing House, Moscow, 512 p. (in Russian)
Review
For citations:
Bergal-Kuvikas O.V., Rogozin A.N., Klyapitsky E.S. The analysis of spatial distributions, origins of caldera-forming eruptions with basaltic-andesitic magma compositions, and genesis of Miocene ignimbrites of the Eastern volcanic belt, Kamchatka. Geodynamics & Tectonophysics. 2019;10(3):815-828. (In Russ.) https://doi.org/10.5800/GT-2019-10-3-0443