Ages and sources of detrital zircons from the Early Mesozoic metasedimentary rocks of the Un’ya-Bom terrane of the Mongol-Okhotsk fold belt: results of U-Th-Pb and Lu-Hf isotope studies
https://doi.org/10.5800/GT-2019-10-3-0442
Abstract
The U-Pb and Lu-Hf isotope studies have been performed to investigate detrital zircons from metaterrigenous deposits (Nel, Kurnal and Amkan formations) of the Un’ya-Bom terrane of the eastern part of the Mongol-Okhotsk fold belt. The concordant ages of the youngest zircon in the metasiltstone of the studiedformations are as follows: 213±3.6 Ma –Nel, 194±4.4 Ma –Kurnal, and 202±2.5 Ma – Amkan. The new data suggest that a previouslyassumed(Middle Jurassic) age of the Amkan formation is uncertain. Most likely, the Kurnal and Amkan formations are of the same (Early Jurassic) age. In any case, a relationship between these formations needs to be clarified. In combination with the data from previous studies of the Tukuringra terrane, our study results show that the Early Mesozoic sedimentary rocks in the structure of the eastern part of the Mongol-Okhotsk fold belt are more abundant than it is currently assumed. Our study results suggest that during the accumulation of the Nel, Kurnal and Amkan formations, the materials were supplied from different provinces, especially from the Amur superterrane (i.e. from the south, in modern coordinates), as well as from the frame of the North Asian craton (i.e from the north, in modern coordinates), although the contribution of the craton source was insignificant.
About the Authors
V. A. ZaikaRussian Federation
Viktor A. Zaika - Post-Graduate Student, Junior Researcher.
1 Relochniy lane, Blagoveshchensk 675000.
A. A. Sorokin
Russian Federation
Andrey A. Sorokin - Doctor of Geology and Mineralogy, Director, Head of Laboratory.
1 Relochniy lane, Blagoveshchensk 675000.
References
1. Amelin Y., Lee D.C., Halliday A.N., Pidgeon R.T., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399 (6733), 252–255. https://doi.org/10.1038/20426.
2. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standarts. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.
3. Blichert-Toft J., Albarède F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148 (1–2), 243–258. https://doi.org/10.1016/S0012-821X(97)00040-X.
4. Buchko I.V., Sal’nikova E.B., Kotov A.B., Larin A.M., Velikoslavinskii S.D., Sorokin A.A., Sorokin A.P., Yakovleva S.Z., 2006. Paleoproterozoic gabbroanorthosites of the Selenga-Stanovoi Superterrane, southern framing of the Siberian Craton. Doklady Earth Sciences 407 (2), 372–375. https://doi.org/10.1134/S1028334X06030068.
5. Buchko I.V., Sorokin A.A., Sal’nikova E.B., Kotov A.B., Larin A.M., Sorokin A.P., Velikoslavinskii S.D., Yakovleva S.Z., 2008. Age and tectonic setting of the Kengurak-Sergachi gabbro-anorthosite massif (the Selenga-Stanovoi superterrane, southern frame of the Siberian craton). Stratigraphy and Geological Correlation 16 (4), 349–359. https://doi.org/10.1134/S0869593808040011.
6. Gehrels G.E., Valencia V., Ruiz J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems 9 (3), Q03017. https://doi.org/10.1029/2007GC001805.
7. Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O’Reilly S.Y., 2004. Archean crustal evolution in the northern Yilgarn craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131 (3–4), 231–282. https://doi.org/10.1016/j.precamres.2003.12.011.
8. Khanchuk A.I., Didenko A.N., Popeko L.I., Sorokin A.A., Shevchenko B.F., 2015. Structure and evolution of the Mongol-Okhotsk orogenic belt. In: A. Kröner (Ed.), The Central Asian orogenic belt. Geology, evolution, tectonics, and models. Germany. Borntraeger Science Publishers, Stuttgart, p. 211–234.
9. Kotov A.B., Velikoslavinskii S.D., Kovach V.P., Sorokin A.A., Sorokin A.P., Skovitina T.M., Zagornaya N.Yu., Wang K.-L., Chung S.-L., Jahn B.-M., 2016. Paleoproterozoic age of the Zeya group, Stanovoy complex of the Dzhugdzhur–Stanovoy superterrane (Central Asian mobile belt): results of Sm–Nd isotopic and U–Th–Pb geochronological (LA-ICP-MS) analyses. Doklady Earth Sciences 471 (2), 1234–1237. https://doi.org/10.1134/S1028334X16120114.
10. Larin A.M., Kotov A.B., Kovach V.P., Sal’nikova E.B., Yarmolyuk V.V., Velikoslavinskii S.D., Yakovleva S.Z., Plotkina Yu.V., 2015. Granitoids of the Olekma Complex in the Selenga–Stanovoi superterrane of the Central Asian mobile belt: Age and tectonic position. Doklady Earth Sciences 464 (1), 903–906. https://doi.org/10.1134/S1028334X15090093.
11. Larin A.M., Kotov A.B., Sal’nikova E.B., Kovach V.P., Ovchinnikova G.V., Savatenkov V.M., Velikoslavinskii S.D., Sorokin A.A., Vasil’eva I.M., Sergeeva N.A., Mel’nikov N.N., Wang K.-L., Chun S.-L., 2018. Granitoids of the Pozdnestanovoy complex of the Dzhugdzhur–Stanovoy superterrane, Central Asia fold belt: age, tectonic setting, and sources. Petrology 26 (5), 447–468. https://doi.org/10.1134/S0869591118050041.
12. Ludwig K.R., 2008. Isoplot 3.6. Berkeley Geochronology Center Special Publication, vol. 4, 77 p.
13. Mattinson J.M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275 (3–4), 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007.
14. Natal'in B., 1993. History and modes of Mesozoic accretion in southeastern Russia. Island Arc 2 (1), 15–34. https://doi.org/10.1111/j.1440-1738.1993.tb00072.x.
15. Paces J.B., Miller Jr. J.D., 1993. Precise U‐Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid Earth 98 (B8), 13997–14013. https://doi.org/10.1029/93JB01159.
16. Parfenov L.M., Popeko L.I., Tomurtogoo O., 2001. Problems of tectonics of the Mongol-Okhotsk orogenic belt. Geology of Pacific Ocean 16 (5), 797–830.
17. Sal’nikova E.B., Larin A.M., Kotov A.B., Glebovitsky V.A., Velikoslavinsky S.D., Sorokin A.A., Yakovleva S.Z., Fedoseenko A.M., Anisimova I.V., 2006. The Toksko-Algomin igneous complex of the Dzhugdzhur-Stanovoi folded region: age and geodynamic setting. Doklady Earth Sciences 409 (2), 888–892. https://doi.org/10.1134/S1028334X06060110.
18. Serezhnikov A.N., Volkova Yu.R., 2007. State Geological Map of the Russian Federation. Scale 1:1000000. Third Generation. Sheet N-52 (Zeya). Far East Series. Publishing House of A.P. Karpinsky Russian Geological Research Institute, Saint Petersburg (in Russian)
19. Sorokin A.A., 2001. Paleozoic accretionary complexes in the eastern segments of the Mongolia–Okhotsk foldbelt. Tikhookeanskaya Geologiya 20 (6), 31–36 (in Russian)
20. Sorokin A.A., Kotov A.B., Kudryashov N.M., Kovach V.P., 2005. Late Paleozoic Urusha magmatic complex in the southern framing of the Mongolia-Okhotsk belt (Amur Region): age and geodynamic setting. Petrology 13 (6), 596–610.
21. Sorokin A.A., Kotov A.B., Kudryashov N.M., Kovach V.P., 2016. Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian orogenic belt: Age and geodynamic setting. Lithos 261, 181–194. https://doi.org/10.1016/j.lithos.2016.03.008.
22. Sorokin A.A., Kudryashov N.M., Kotov A.B., Kovach V.P., 2017. Age and tectonic setting of the Early Paleozoic magmatism of the Mamyn Terrane, Central Asian orogenic belt, Russia. Journal of Asian Earth Sciences 144, 22–39. https://doi.org/10.1016/j.jseaes.2017.01.017.
23. Sorokin A.A., Ovchinnikov R.O., Xu W.L., Kovach V.P., Yang H., Kotov A.B., Ponomarchuk V.A., Travin A.V., Plotkina Yu.V., 2019. Ages and nature of the protolith of the Tulovchikha metamorphic complex in the Bureya Massif, Central Asian orogenic belt, Russia: evidence from U–Th–Pb, Lu–Hf, Sm–Nd, and 40Ar/39Ar data. Lithos 332–333, 340–354. https://doi.org/10.1016/j.lithos.2019.03.001.
24. Söderlund U., Patchett P.J., Vervoort J.D., Isachsen C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219 (3–4), 311–324. https://doi.org/10.1016/S0012-821X(04)00012-3.
25. Stacey J.S., Kramers I.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planet Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.
26. Sun D.Y., Gou J., Wang T.H., Ren Y.S., Liu Y.J., Guo H.Y., Liu X.M., Hu Z.C., 2013. Geochronological and geochemical constraints on the Erguna massif basement, NE China – subduction history of the Mongol–Okhotsk oceanic crust. International Geology Review 55 (14), 1801–1816. https://doi.org/10.1080/00206814.2013.804664.
27. Tang J., Xu W.L., Wang F., Zhao S., Wang W., 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research 31, 218–240. https://doi.org/10.1016/j.gr.2014.12.010.
28. Velikoslavinskii S.D., Kotov A.B., Sal’nikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Gorokhovskii B.M., 2011. Age of the Ilikan Sequence from the Stanovoi Complex of the Dzhugdzhur-Stanovoi Superterrane, Central-Asian fold belt. Doklady Earth Sciences 438 (1). https://doi.org/10.1134/S1028334X11050400.
29. Velikoslavinskii S.D., Kotov A.B., Salnikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Yakovleva S.Z., Anisimova I.V., 2012. Age of the Ust’-Gilyui sequence in the Stanovoi Complex of the Selenga-Stanovoi Superterrain, Central Asian fold belt. Doklady Earth Sciences 444 (2), 661–665. https://doi.org/10.1134/S1028334X12060086.
30. Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Wang K.L., Cung S.L., 2015. The Paleoproterozoic age of protoliths of metasedimentary rocks of the Sutam formation of the Aldan granulite-gneiss megacomplex (Stanovoi suture). Doklady Earth Sciences 463 (2), 765–769. https://doi.org/10.1134/S1028334X15080073.
31. Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Larin A.M., Sorokin A.A., Sorokin A.P., Wang K.L., Salnikova E.B., 2016a. Age, sources, and provenances of protoliths of metasedimentary rocks of the Dzheltulak group, Dzheltulak suture. Doklady Earth Sciences 468 (2), 545–548. https://doi.org/10.1134/S1028334X16060027.
32. Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Larin A.M., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Salnikova E.B., Wang K.L., Jahn B.M., Cung S.L., 2016b. Mesozoic age of the Gilyui Metamorphic Complex in the junction zone of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes, Central Asian fold belt. Doklady Earth Sciences 468 (2), 561–565. https://doi.org/10.1134/S1028334X16060167.
33. Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Sorokin A.A., Sal’nikova E.B., Larin A.M., Zagornaya N.Yu., Wang K.L., Chung S.-L., 2017. Age and tectonic position of the Stanovoi metamorphic complex in the eastern part of the Central Asian foldbelt. Geotectonics 51 (4), 341–352. https://doi.org/10.1134/S0016852117040070.
34. Vervoort J.D., Patchett P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60 (19), 3717–3733. https://doi.org/10.1016/0016-7037(96)00201-3.
35. Wang W., Tang J., Xu W.L., Wang F., 2015. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos 218–219, 73–86. https://doi.org/10.1016/j.lithos.2015.01.012.
36. Wu F.Y., Sun D.Y., Ge W.C., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41 (1), 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014.
37. Zaika V.A., Sorokin A.A., Kovach V.P., 2018a. Sources and source areas of the Upper Paleozoic metasedimentary rocks of the Dzhagda terrane of the Mongol-Okhotsk fold belt: the results of Sm-Nd isotope geochemical studies. Geodynamics & Tectonophysics 9 (4), 1331–1338 (in Russian) https://doi.org/10.5800/GT-2018-9-4-0398.
38. Zaika V.A., Sorokin A.A., Xu B., Kotov A.B., Kovach V.P., 2018b. Geochemical features and sources of metasedimentary rocks of the western part of the Tukuringra terrane of the Mongol–Okhotsk fold belt. Stratigraphy and Geological Correlation 26 (2), 157–178. https://doi.org/10.1134/S0869593818020077.
39. Zaika V.A., Sorokin A.A., Kovach V.P., Sorokin A.P., Kotov A.B., 2019. Age and sources of Lower Mesozoic metasedimentary rocks of the Un’ya-Bom terrane in the Mongol–Okhotsk fold belt: results of U–Pb geochronological (LA-ICP-MS) and Sm–Nd isotope studies. Doklady Earth Sciences 484 (2), 115–119. https://doi.org/10.1134/S1028334X19020089.
Review
For citations:
Zaika V.A., Sorokin A.A. Ages and sources of detrital zircons from the Early Mesozoic metasedimentary rocks of the Un’ya-Bom terrane of the Mongol-Okhotsk fold belt: results of U-Th-Pb and Lu-Hf isotope studies. Geodynamics & Tectonophysics. 2019;10(3):801-813. (In Russ.) https://doi.org/10.5800/GT-2019-10-3-0442