Preview

Geodynamics & Tectonophysics

Advanced search

THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA)

https://doi.org/10.5800/GT-2014-5-3-0149

Abstract

This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC) and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma) in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma) igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (178–152 Ma) of the Naushki and Verhnemangirtui massifs. In the footwall of the Butuliyn-Nur and Zagan MCC, the most common are granitoids and felsic volcanic rocks (249–211 Ma) with many similar geochemical characteristics, such as high alkalinity, high contents of Sr and Ba, moderate and low concentrations of Nb and Y. Considering the contents of trace elements and REE, the granitoids and the felsic volcanic rocks are similar to I-type granites. Specific compositions of these rocks suggest that they might have formed in conditions of the active continental margin of the Siberian continent over the subducting oceanic plate of the Mongol-Okhotsk Ocean. The granitoids of the Naushki and Verhnemangirtui massifs, which are the youngest of the studied rocks (178–152 Ma), also have similar geochemical characteristics. In both massif, granitoids are ferriferous, mostly alkaline rocks. By contents of both major and trace elements, they are comparable to A-type granites. Such granitoids formed in conditions of intracontinental extension while subduction was replaced by collision. Based on ages and geochemical characteristics of the rocks in the footwall of the Butuliyn-Nur and Zagan MCC, a good correlation is revealed between the studied rocks  and the rock complexes of the Transbaikalian and North-Mongolian segments of the Central Asian fold belt (CAFB), and it can thus be suggested that the regions under study may have a common evolutionary history.

About the Authors

T. V. Donskaya  
Institute of the Earth's Crust of SB RAS, Irkutsk, Russia 
Russian Federation

Candidate of Geology and Mineralogy, Senior researcher
Institute of the Earth’s Crust, Siberian Branch of RAS
128 Lermontov street, Irkutsk 664033, Russia



A. M. Mazukabzov
Institute of the Earth's Crust of SB RAS, Irkutsk, Russia 
Russian Federation

Doctor of Geology and Mineralogy, Lead researcher
Institute of the Earth’s Crust, Siberian Branch of RAS
128 Lermontov street, Irkutsk 664033, Russia



References

1. Barbarin B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46 (3), 605–626. http://dx.doi.org/10.1016/S0024-4937(98)00085-1.

2. Chappell B.W., White A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173–174.

3. Chappell B.W., White A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Ed-inburgh: Earth Sciences 83 (1–2), 1–26. http://dx.doi.org/10.1017/S0263593300007720.

4. Dall'Agnol R., Oliveira D.C., 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 93 (3–4), 215–233. http://dx.doi.org/10.1016/j.lithos. 2006.03.065.

5. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., De Waele B., Presnyakov S.L., 2012. The Late Triassic Kataev vol-canoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean. Russian Geology and Geophysics 53 (1), 22–36. http://dx.doi.org/10.1016/j.rgg.2011.12.002.

6. Donskaya Т.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., 2013. Late Paleozoic – Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences 62, 79–97. http://dx.doi.org/10.1016/j.jseaes.2012.07.023.

7. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Sklyarov E.V., Lepekhina E.N., Wang T., Zeng L., Guo L., 2014. Continuity of Late Paleozoic – Early Mesozoic Magmatism in the Western Transbaikal Region. Doklady Earth Sciences 458 (1), 1067–1072. http://dx.doi.org/10.1134/S1028334X14090268.

8. Donskaya T.V., Windley B.F., Mazukabzov A.M., Kröner A., Sklyarov E.V., Gladkochub D.P., Ponomarchuk V.A., Badarch G., Reichow M.R., Hegner E., 2008. Age and evolution of Late Mesozoic metamorphic core complexes in Southern Siberia and Northern Mongolia. Journal of the Geological Society, London 165 (1), 405–421. http://dx.doi.org/10.1144/0016-76492006-162.

9. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. http://dx.doi.org/10.1093/petrology/42.11.2033.

10. Geological Map of the Southern East Siberia and Northern Mongolia, 1983. Scale 1:1500000. The USSR Ministry of Geology (Mingeo SSSR), Moscow (in Russian) [Геологическая карта юга Восточной Сибири и северной части МНР. М-б 1:1500000. М.: Мингео СССР, 1983].

11. Jahn B.M., Litvinovsky B.A., Zanvilevich A.N., Reichow M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos 113 (3–4), 521–539. http://dx.doi.org/ 10.1016/j.lithos.2009.06.015.

12. Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be’eri-Shlevin Y., 2011. Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125 (3–4), 845–874. http://dx.doi.org/10.1016/j.lithos.2011.04.007.

13. Mazukabzov A.M., Donskaya T.V., Gladkochub D.P., Paderin I.P., 2010. The Late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt. Russian Geology and Geophysics 51 (5), 482–491. http://dx.doi. org/10.1016/j.rgg.2010.04.008.

14. Mazukabzov A.M., Donskaya, T.V., Gladkochub D.P., Sklyarov E.V., Ponomarchuk V.A., Sal’nikova E.B., 2006. Structure and age of the metamorphic core complex of the Burgutui ridge (Southwestern Transbaikal region). Doklady Earth Sciences 407 (1), 179–183. http://dx.doi.org/10.1134/S1028334X06020048.

15. Mazukabzov A.M., Sklyarov E.V., Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., 2011. Metamorphic core complexes of the Transbaikalia: review. Geodynamics & Tectonophysics 2 (2), 95–125. http://dx.doi.org/10.5800/GT-2011-2-2-0036.

16. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jounal of Petrology 25 (4), 956–983. http://dx.doi.org/10.1093/petrology/25.4.956.

17. Petrographic Code of Russia, 2009. Igneous, Metamorphic, Metasomatic and Impact Formations. VSEGEI, St. Petersburg. 200 p. (in Russian) [Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. СПб.: ВСЕГЕИ, 2009. 200 с.].

18. Reichow M.K., Litvinovsky B.A., Parrish R.R., Saunders A.D., 2010. Multi-stage emplacement of alkaline and peralkaline syenite-granite suites in the Mongolian–Transbaikalian Belt, Russia: evidence from U–Pb geochronology and whole-rock geochemistry. Chemical Geology 273 (1–2), 120–135. http://dx.doi.org/10.1016/j.chemgeo.2010.02.017.

19. Saunders A.D., Norry M.J., Tarney J., 1988. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. Journal of Petrology (Special Lithosphere Issue), 415–445. http://dx.doi.org/10.1093/petrology/Special_Volume. 1.415.

20. Sklyarov E.V., Mazukabzov A.M., Donskaya T.V., Doronina N.A., Shafeev A.A., 1994. The Zagan metamorphic core complex (Transbaikalie). Doklady AN 339 (1), 83–86 (in Russian) [Скляров Е.В., Мазукабзов А.М., Донская Т.В., Доронина Н.А., Шафеев А.А. Заганский комплекс метаморфического ядра (Забайкалье) // Доклады АН. 1994. Т. 339. № 1. С. 83–86].

21. Sklyarov E.V., Mazukabzov A.M., Mel’nikov A.I., 1997. Metamorphic Core Complexes of Cordilleran Type. Publishing House of the Scientific Research Centre of A.A. Trofimuk Institute of Geology, Geophysics and Mineralogy, Siberian Branch of RAS, Novosibirsk, 182 p. (in Russian) [Скляров Е.В., Мазукабзов А.М., Мельников А.И. Комплексы мета-морфических ядер кордильерского типа. Новосибирск: Изд-во СО РАН НИЦ ОИГГМ, 1997. 182 с.].

22. Sun S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes Basins. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Oceanic. Geological Society, London, Special Publication 42, 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

23. Tsygankov A.A., Litvinovsky B.A., Jahn B.M., Reichow M.K., Liu D.Y., Larionov A.N., Presnyakov S.L., Lepekhina Y.N., Sergeev S.A., 2010. Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Russian Geology and Geophysics 51 (9), 972–994. http://dx.doi.org/10.1016/j.rgg.2010.08.007.

24. Turkina O.M., 2000. Modeling geochemical types of tonalite–trondhjemite melts and their natural equivalents. Geochemistry International 38 (7), 640–651.

25. Turkina O.M., 2005. Proterozoic tonalites and trondhjemites of the Southwestern margin of the Siberian Craton: Isotope geochemical evidence for the lower crustal sources and conditions of melt formation in collisional settings. Petrology 13 (1), 35–48.

26. Volkova N.I., Sklyarov E.V., 2007. High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russian Geology and Geophysics 48 (1), 83–90. http://dx.doi.org/10.1016/j.rgg.2006.12.008.

27. Wang T., Guo L., Zheng Y., Donskaya T., Gladkochub D., Zeng L., Li J., Wang Y., Mazukabzov A., 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U–Pb ages from metamorphic core complexes. Lithos 154, 315–345. http://dx.doi.org/10.1016/j.lithos.2012.07.020.

28. Wang T., Zheng Y., Zhang J., Zeng L., Donskaya T., Guo L., Li J., 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes. Tectonics 30 (6), TC6007. http://dx. doi.org/10.1029/2011TC002896.

29. Whalen J.B., Currie K.L., Chappel B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis.

30. Contributions to Mineralogy and Petrology 95 (4), 407–419. http://dx.doi.org/10.1007/BF00402202.


Review

For citations:


Donskaya   T.V., Mazukabzov A.M. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA). Geodynamics & Tectonophysics. 2014;5(3):683-701. (In Russ.) https://doi.org/10.5800/GT-2014-5-3-0149

Views: 1302


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)