Preview

Geodynamics & Tectonophysics

Advanced search

Estimation of the contributions of conductance and electric field to the intensity of field-aligned currents in the night polar ionosphere during substorm expansion phase

https://doi.org/10.5800/GT-2019-10-3-0433

Abstract

Based on the output data of the magnetogram inversion technique, we analyze the dynamics of the Pedersen ionospheric currents and field-aligned currents (FACs) in the night mesoscale cells of the three main large-scale Iijima and Potemra Regions (R1, R2 and R0) during the expansion phase of the summer and winter substorms. FACs play a key role in the ionosphere-magnetosphere interaction. The continuity equation for the electric current density contains two types of possible feedback within the electric circuit parts that connect Pedersen currents and FACs in each cell. Pedersen ionospheric conductivity is dominant to Type 1, and the electric field dominates in Type 2 feedback. This paper studies both types of physical feedback in mesoscale cells of downward and upward FACs on the night side of the polar ionosphere from the data of two selected substorms of the summer and winter seasons in the northern hemisphere.

About the Authors

V. V. Mishin
Institute of Solar-Terrestrial Physics, Siberian Branch of RAS
Russian Federation

Vladimir V. Mishin - Doctor of Physics and Mathematics.

126A Lermontov street, Irkutsk 664033.



S. B. Lunyushkin
Institute of Solar-Terrestrial Physics, Siberian Branch of RAS
Russian Federation

Sergei B. Lunyushkin.

126A Lermontov street, Irkutsk 664033.



V. M. Mishin
Institute of Solar-Terrestrial Physics, Siberian Branch of RAS
Russian Federation

Vilen M. Mishin - Doctor of Physics and Mathematics.

126A Lermontov street, Irkutsk 664033.



M. A. Kurikalova
Institute of Solar-Terrestrial Physics, Siberian Branch of RAS
Russian Federation

Marina A. Kurikalova - Candidate of Physics and Mathematics.

126A Lermontov street, Irkutsk 664033.



Yu. V. Penskikh
Institute of Solar-Terrestrial Physics, Siberian Branch of RAS
Russian Federation

Yuri V. Penskikh.

126A Lermontov street, Irkutsk 664033.



References

1. Atkinson G., 1970. Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere. Journal of Geophysical Research 75 (25), 4746–4755. https://doi.org/10.1029/JA075i025p04746.

2. Cattell C., Lysak R., Torbert R.B., Mozer F.S., 1979. Observations of differences between regions of current flowing into and out of the ionosphere. Geophysical Research Letters 6 (7), 621–624. https://doi.org/10.1029/GL006i007p00621.

3. Evans D.S., 1974. Precipitating electron fluxes formed by a magnetic field aligned potential difference. Journal of Geophysical Research 79 (19), 2853–2858. https://doi.org/10.1029/JA079i019p02853.

4. Fujii R., Hoffman R.A., Anderson P.C., Craven J.D., Sugiura M., Frank L.A., Maynard N.C., 1994. Electrodynamic parameters in the nighttime sector during auroral substorms. Journal of Geophysical Research: Space Physics 99 (A4), 6093–6112. https://doi.org/10.1029/93ja02210.

5. Gjerloev J.W., Hoffman R.A., 2000a. Height‐integrated conductivity in auroral substorms: 1. Data. Journal of Geophysical Research: Space Physics 105 (A1), 215–226. https://doi.org/10.1029/1999ja900354.

6. Gjerloev J.W., Hoffman R.A., 2000b. Height‐integrated conductivity in auroral substorms: 2. Modeling. Journal of Geophy¬sical Research: Space Physics 105 (A1), 227–235. https://doi.org/10.1029/1999ja900353.

7. Gjerloev J.W., Hoffman R.A., 2002. Currents in auroral substorms. Journal of Geophysical Research: Space Physics 107 (A8), 1163. https://doi.org/10.1029/2001ja000194.

8. Iijima T., Potemra T.A., 1978. Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research: Space Physics 83 (A2), 599–615. https://doi.org/10.1029/JA083iA02p00599.

9. Kamide Y., Baumjohann W., 1993. Magnetosphere-Ionosphere Coupling. Springer, Berlin, 178 p. https://doi.org/10.1007/978-3-642-50062-6.

10. Kepko L., McPherron R.L., Amm O., Apatenkov S., Baumjohann W., Birn J., Lester M., Nakamura R., Pulkkinen T.I., Sergeev V., 2014. Substorm current wedge revisited. Space Science Reviews 190 (1–4), 1–46. https://doi.org/10.1007/s11214-014-0124-9.

11. Korth H., Zhang Y., Anderson B.J., Sotirelis T., Waters C.L., 2014. Statistical relationship between large-scale upward field-aligned currents and electron precipitation. Journal of Geophysical Research: Space Physics 119 (8), 6715–6731. https://doi.org/10.1002/2014ja019961.

12. Kurikalova M.A., Mishin V.M., Mishin V.V., Lunyushkin S.B., Penskikh Y.V., 2018. Relative role of the azimuthal Pedersen current component in the substorm global electric circuit. Journal of Atmospheric and Solar-Terrestrial Physics 179, 562–568. https://doi.org/10.1016/j.jastp.2018.09.014.

13. Lu G., Brittnacher M., Parks G., Lummerzheim D., 2000. On the magnetospheric source regions of substorm‐related field‐aligned currents and auroral precipitation. Journal of Geophysical Research: Space Physics 105 (A8), 18483–18493. https://doi.org/10.1029/1999ja000365.

14. Mishin V.M., 1990. The magnetogram inversion technique and some applications. Space Science Reviews 53 (1–2), 83–163. https://doi.org/10.1007/bf00217429.

15. Mishin V.M., Förster M., Kurikalova M.A., Mishin V.V., 2011. The generator system of field-aligned currents during the April 06, 2000, superstorm. Advances in Space Research 48 (7), 1172–1183. https://doi.org/10.1016/j.asr.2011.05.029.

16. Mishin V.M., Kurikalova M.A., Mishin V.V., Wang C., Wang J.Y., 2015. Field-aligned current dynamics in two selected intervals of the 6 April 2000 superstorm. In: A.G. Yahnin (Ed.), Physics of auroral phenomena. Proceedings of the XXXVIII Annual Seminar. Kola Science Centre, Russian Academy of Science, Apatity, p. 24–27.

17. Mishin V.M., Mishin V.V., Lunyushkin S.B., Wang J.Y., Moiseev A.V., 2017. 27 August 2001 substorm: Preonset phenomena, two main onsets, field-aligned current systems, and plasma flow channels in the ionosphere and in the magnetosphere. Journal of Geophysical Research: Space Physics 122 (5), 4988–5007. https://doi.org/10.1002/2017ja023915.

18. Mishin V.M., Pu Z., Mishin V.V., Lunyushkin S.B., 2013. Short-circuit in the magnetosphere-ionosphere electric circuit. Geomagnetism and Aeronomy 53 (6), 809–811. https://doi.org/10.1134/s001679321306008x.

19. Mozer F.S., Cattell C.A., Hudson M.K., Lysak R.L., Temerin M., Torbert R.B., 1980. Satellite measurements and theories of low altitude auroral particle acceleration. Space Science Reviews 27 (2), 155–213. https://doi.org/10.1007/BF00212238.

20. Potemra T.A., 1978. Observation of Birkeland currents with the TRIAD satellite. Astrophysics and Space Science 58 (1), 207–226. https://doi.org/10.1007/bf00645387.

21. Shirapov D.S., Mishin V.M., Bazarzhapov A.D., Saifudinova T.I., 2000. Adapted dynamic model of ionospheric conductivity. Geomagnetism and Aeronomy 40 (4), 471–475.

22. Streltsov A.V., Mishin E.V., 2018. On the existence of ionospheric feedback instability in the Earth's magnetosphere‐ionosphere system. Journal of Geophysical Research: Space Physics 123 (11), 8951–8957. https://doi.org/10.1029/2018JA025942.

23. Sugiura M., 1984. A fundamental magnetosphere-ionosphere coupling mode involving field-aligned currents as deduced from DE-2 observations. Geophysical Research Letters 11 (9), 877–880. https://doi.org/10.1029/GL011i009p00877.

24. Trakhtengertz V.Y., Feldstein A.Y., 1984. Quiet auroral arcs: Ionosphere effect of magnetospheric convection stratification. Planetary and Space Science 32 (2), 127–134. https://doi.org/10.1016/0032-0633(84)90147-8.


Review

For citations:


Mishin V.V., Lunyushkin S.B., Mishin V.M., Kurikalova M.A., Penskikh Yu.V. Estimation of the contributions of conductance and electric field to the intensity of field-aligned currents in the night polar ionosphere during substorm expansion phase. Geodynamics & Tectonophysics. 2019;10(3):663-672. https://doi.org/10.5800/GT-2019-10-3-0433

Views: 901


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)