Research and verification of the earth’s crust velocity models by mathematical simulation and active seismology methods
https://doi.org/10.5800/GT-2019-10-3-0427
Abstract
The article discusses a comparison of theoretical seismograms for two velocity models of the Earth's crust and P-wave arrival times estimated from experimental vibration seismograms for the 400-km long section of the Baikal–Ulaanbaatar profile. The theoretical seismograms were obtained by mathematical simulation of wave fields using the Earth's crust velocity models based on the data of the BEST and PASSCAL experiments. Vibration seismograms were obtained by measuring the wave field of a CVO-100 vibrator in the SB RAS Southern Baikal polygon. In the experiments, the vibration seismograms show that arrival times in the P-wave group correspond to the values for waves of large amplitudes in the theoretical seismograms. The P-wave arrival times in the theoretical seismograms of the BEST experiment are compared to the values in the experimental vibration seismograms for the 400-km long section of the Baikal–Ulaanbaatar profile. This comparison shows that the arrival times of maximum amplitude waves correspond to the theoretical hodographs of waves with velocities of 6.25–6.80 km/sec in the BEST experiment velocity model. At the same time, the experimental data set does not contain arrival times corresponding to longitudinal waves with Vp=7.25 km/sec, which are related to an assumed layer (more than 10 km thick) in the lower crust for the BEST experiment velocity model. In the experiments, the P-wave arrival times in the vibration seismograms correspond to the P-wave arrival times in the theoretical seismograms of the PASSCAL experiment throughout the entire 400-km long section of the Baikal–Ulaanbaatar profile. It is thus confirmed that the average values of the wave velocities in the PASSCAL velocity model have been reliably estimated. It should be noted that the experimental values of the arrival times of the first wave in the P-wave group are in agreement with the first arrival times in the hodographs of the theoretical seismograms for the velocity model in the PASSCAL experiment considering the distances from the source in a range of 65–380 km.
About the Authors
V. V. KovalevskyRussian Federation
Valery V. Kovalevsky - Doctor of Technical Sciences, Deputy Director for Science.
6 Academician Lavrentiev ave., Novosibirsk 630090.
A. G. Fatyanov
Russian Federation
Alexey G. Fatyanov - Doctor of Physics and Mathematics, Chief Researcher.
6 Academician Lavrentiev ave., Novosibirsk 630090.
D. A. Karavaev
Russian Federation
Dmitry A. Karavaev - Candidate of Physics and Mathematics, Researcher.
6 Academician Lavrentiev ave., Novosibirsk 630090.
L. P. Braginskaya
Russian Federation
Lyudmila P. Braginskaya - Lead Programmer.
6 Academician Lavrentiev ave., Novosibirsk 630090.
A. P. Grigoryuk
Russian Federation
Andrey P. Grigoryuk – Researcher.
6 Academician Lavrentiev ave., Novosibirsk 630090.
V. V. Mordvinova
Russian Federation
Valentina V. Mordvinova - Doctor of Geology and Mineralogy, Lead Researcher.
128 Lermontov street, Irkutsk 664033.
Ts. A. Tubanov
Russian Federation
Tsyren A. Tubanov - Candidate of Geology and Mineralogy, Head of Laboratory.
6a Sakhyanova street, Ulan-Ude 670047.
A. D. Bazarov
Russian Federation
Artem D. Bazarov - Candidate of Geology and Mineralogy, Researcher.
6a Sakhyanova street, Ulan-Ude 670047.
References
1. Alekseev A.S., Chichinin I.S., Korneev V.A., 2005. Powerful low-frequency vibrators for active seismology. Bulletin of the Seismological Society of America 95 (1), 1–17. https://doi.org/10.1785/0120030261.
2. Alekseev A.S., Glinsky B.M., Kovalevsky V.V., Mikhailenko B.G., 1997. Problems of active seismology. In: K. Fuch (Ed.), Upper mantle heterogeneities from active and passive seismology. Nato ASI Series, vol. 17, p. 123–130.
3. Ammon C.J., Randall G.E., Zandt G., 1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth 95 (B10), 15303–15318. https://doi.org/10.1029/JB095iB10p15303.
4. Burdick L.J., Langston C.A., 1977. Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of America 67 (3), 677–691.
5. Fatyanov A.G., 1990. Semi-analytical method for solving direct dynamic problems in layered media. Doklady AN SSSR 310 (2), 323–327 (in Russian)
6. Fatyanov A.G., Terekhov A.V., 2011. High-performance modeling acoustic and elastic waves using the parallel Dichotomy Algorithm. Journal of Computational Physics 230 (5), 1992–2003. https://doi.org/10.1016/j.jcp.2010.11.046.
7. Gao S.S., Liu K.H., Chen C., 2004. Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis. Geophysical Research Letters 31 (20), L20610. https://doi.org/10.1029/2004GL020813.
8. Karavaev D.A., 2009. Parallel implementation of wave field numerical modeling method in 3D models of inhomogeneous media. Vestnik of Lobachevsky University of Nizhni Novgorod (6(1)), 203–209 (in Russian)
9. Karavaev D., Glinsky B., Kovalevsky V., 2015. A technology of 3D elastic wave propagation simulation using hybrid supercomputers. In: CEUR workshop proceedings of the 1st Russian conference on supercomputing. (Supercomputing Days Moscow, Russia, September 28–29). Moscow, p. 26–33.
10. Kosarev G.L., Petersen N.V., Vinnik L.P., Roecker S.W., 1993. Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Talasso‐Fergana fault. Journal of Geophysical Research: Solid Earth 98 (B3), 4437–4448. https://doi.org/10.1029/92JB02651.
11. Kovalevskiy V., Chimed O., Tubanov Ts., Braginskaya L., Grigoruk A., Fatyanov A., 2017. Vibroseismic sounding of the Earth’s crust on the profile Baikal–Ulaanbaatar. In: Proceedings of the International conference on astronomy & geophysics. Ulaanbaatar, p. 261–265.
12. Kovalevsky V.V., Braginskaya L.P., Grigoryuk A.P., 2016a. An information technology of verification of Earth's crust velocity models. In: 13th International Scientific-Technical Conference APEIE 2016 Proceedings, Vol. 2, p. 443–446.
13. Kovalevsky V.V., Fatyanov A.G., Karavayev D.A., 2016b. Verification of the velocity models of the Earth's crust of the Baikal region, built according to the BEST and PASSCAL experiments. Interexpo Geo-Siberia 4 (2), 3–7 (in Russian)
14. Krylov S.V., Golenetsky S.I., Petrik G.V., 1974. Harmonization of seismology and PSS data on the structure of the upper mantle in the Baikal rift zone. Geologiya i Geofizika (Russian Geology and Geophysics) 15 (12), 61–65 (in Russian)
15. Mishen'kin B.P., Mishen'kina Z.R., Petrik G.V., Shelud'ko I.F., Mandel'baum M.M., Seleznev V.S., Solov'ev V.M., 1999. Deep seismic sounding of the Earth's crust and upper mantle in the Baikal rift zone. Izvestiya, Physics of the Solid Earth 35 (7–8), 594–611.
16. Mordvinova V.V., Artemyev A.A., 2010. The three-dimensional shear velocity structure of lithosphere in the southern Baikal rift system and its surroundings. Russian Geology and Geophysics 51 (6), 694–707. https://doi.org/10.1016/j.rgg.2010.05.010.
17. Mordvinova V.V., Deschamps A., Dugarmaa T., Déverchère J., Ulziibat M., Sankov V.A., Artem’ev A.A., Perrot J., 2007. Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth 43 (2), 119–129. https://doi.org/10.1134/S1069351307020036.
18. Mordvinova V.V., Vinnik L.P., Kosarev G.L., Oreshin S.I., Treusov A.V., 2000. Teleseismic tomography of the Baikal rift lithosphere. Doklady Earth Sciences 372 (4), 716–720.
19. Mordvinova V.V., Zorin Yu.A., Gao Sh., Davis P.M., 1995. Estimates of the crustal thickness on the Irkutsk–Ulan-Bator–Undurshil profile using spectral ratios of bulk seismic waves. Fizika Zemli (9), 35–42 (in Russian)
20. Nielsen C., Thybo H., 2009. Lower crustal intrusions beneath the southern Baikal rift zone: evidence from full-waveform modelling of wide-angle seismic data. Tectonophysics 470 (3–4), 298–318. https://doi.org/10.1016/j.tecto.2009.01.023.
21. Owens T.J., Zandt G., Taylor S.R., 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research: Solid Earth 89 (B9), 7783–7795. https://doi.org/10.1029/JB089iB09p07783.
22. Puzyrev N.N. (Ed.), 1981. Interior of Baikal from Seismic Data. Nauka, Novosibirsk, 105 p. (in Russian)
23. Puzyrev N.N., Mandelbaum M.M., Krylov S.V., Mishenkin B.P., Krupskaya G.V., Petrick G.V., 1973. Deep seismic investigations in the Baikal rift zone. Tectonophysics 20 (1–4), 85–95. https://doi.org/10.1016/0040-1951(73)90098-X.
24. Puzyrev N.N., Mandelbaum M.M., Krylov S.V., Mishenkin B.P., Petrik G.V., Krupskaya G.V., 1978. Deep structure of the Baikal and other continental rift zones from seismic data. Tectonophysics 45 (1), 15–22. https://doi.org/10.1016/0040-1951(78)90219-6.
25. Seleznev V.S., Tibo G., Perchuk E., Emanov A.F., Suvorov V.D., Soloviov V.M., Tat’kov G.I., Liseikin A.V., Annenkov V.V., Mishen’kina Z.R., 2003. Using the new deep seismic technology to study the deep structure of the southwestern flank of the Baikal rift zone. In: Problems of seismology in the third millennium. Proceedings of the International Geophysical Conference (15–19 September 2003, Novosibirsk). Publishing House of SB RAS, Novosibirsk, p. 324–329 (in Russian)
26. Suvorov V.D., Mishenkina Z.M., Petrick G.V., Sheludko I.F., Seleznev V.S., Solovyov V.M., 2002. Structure of the crust in the Baikal rift zone and adjacent areas from deep seismic sounding data. Tectonophysics 351 (1–2), 61–74. https://doi.org/10.1016/S0040-1951(02)00125-7.
27. Tat'kov G.I., Tubanov Ts.A., Bazarov A.D., Tolochko V.V., Kovalevsky V.V., Braginskaya L.P., Grigoruk A.P., 2013. Vibroseismic studies of the lithosphere of the Baikal rift zone and adjacent territories. Otechestvennaya Geologiya (Russian Geology) (3), 16–23 (in Russian)
28. Ten Brink U.S., Taylor M.H., 2002. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research: Solid Earth 107 (B7), 2132. https://doi.org/10.1029/2001JB000300.
29. Tsibulchik G.M. (Ed.), 2004. Active Seismology with Powerful Vibrational Sources. Publishing House of SB RAS, Geo Branch, Novosibirsk, 387 p. (in Russian)
30. Vinnik L.P., 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors 15 (1), 39–45. https://doi.org/10.1016/0031-9201(77)90008-5.
31. Zhao D., Lei J., Inoue T., Yamada A., Gao S.S., 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 243 (3–4), 681–691. https://doi.org/10.1016/j.epsl.2006.01.033.
32. Zorin Y.A., Kozhevnikov V.M., Novoselova M.R., Turutanov E.K., 1989. Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions. Tectonophysics 168 (4), 327–337. https://doi.org/10.1016/0040-1951(89)90226-6.
33. Zorin Y.A., Mordvinova V.V., Turutanov E.K., Belichenko B.G., Artemyev A.A., Kosarev G.L., Gao S.S., 2002. Low seismic velocity layers in the Earth's crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics 359 (3–4), 307–327. https://doi.org/10.1016/S0040-1951(02)00531-0.
34. Zorin Y.A., Turutanov E.K., Mordvinova V.V., Kozhevnikov V.M., Yanovskaya T.B., Treussov A.V., 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371 (1–4), 153–173. https://doi.org/10.1016/S0040-1951(03)00214-2.
Review
For citations:
Kovalevsky V.V., Fatyanov A.G., Karavaev D.A., Braginskaya L.P., Grigoryuk A.P., Mordvinova V.V., Tubanov Ts.A., Bazarov A.D. Research and verification of the earth’s crust velocity models by mathematical simulation and active seismology methods. Geodynamics & Tectonophysics. 2019;10(3):569-583. (In Russ.) https://doi.org/10.5800/GT-2019-10-3-0427