Preview

Geodynamics & Tectonophysics

Advanced search

CHARACTERISTICS OF SELF‐SIMILARITY OF SEISMICITY AND THE FAULT NETWORK OF THE SIKHOTE ALIN OROGENIC BELT AND THE ADJACENT AREAS

https://doi.org/10.5800/GT-2019-10-2-0425

Abstract

We performed a comprehensive analysis of the characteristics of self‐similarity of seismicity and the fault network within the Sikhote Alin orogenic belt and the adjacent areas. It has been established that the main features of seismicity are controlled by the crustal earthquakes. Differentiation of the study area according to the density of earthquake epicenters and the fractal dimension of the epicentral field of earthquakes (De) shows that the most active crustal areas are linked to the Kharpi‐Kur‐Priamurye zone, the northern Bureya massif and the Mongol‐Okhotsk folded system. The analysis of the earthquake recurrence plot slope values reveals that the highest b‐values correlate with the areas of the highest seismic activity of the northern part of the Bureya massif and, to a less extent, of the Mongol‐Okhotsk folded system. The increased fractal dimension values for the fault network (Df) correlate with the folded systems (Sikhote Alin and Mongol‐Okhotsk), while the decreased values conform to the depressions and troughs (Middle Amur, Uda and Torom). A comparison of the fractal analysis results for the fault network with the recent stress‐strain data gives evidence of their general confineness to the contemporary areas of intense compression. The correspondence between the field of the parameter b‐value for the upper crustal earthquakes and the fractal dimension value for the fault network (Df) suggests a general consistency between the self‐similar earthquake magnitude (energy) distribution and the fractal distribution of the fault sizes. The analysis results demonstrate that the selfsimilarity parameters provide an important quantitative characteristic in seismotectonics and can be used for the neotectonic and geodynamic analyses.

About the Authors

V. S. Zakharov
M.V. Lomonosov Moscow State University; Dubna State University
Russian Federation

Vladimir S. Zakharov - Doctor of Geology and Mineralogy, Professor

Faculty of Geology M.V. Lomonosov Moscow State University

1 Leninskie Gory, GSP-1, Moscow 119991, 

19 Universitetskaya street, Dubna 141982



A. N. Didenko
Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS; Pacific National University
Russian Federation

Aleksei N. Didenko - Doctor of Geology and Mineralogy, Corresponding Member of RAS, Chief Researcher

65 Kim Yu Chen street, Khabarovsk 680000, 136 Tikhookeanskaya street, Khabarovsk 680035



G. Z. Gil’manova
Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS
Russian Federation

Gul’shat Z. Gil’manova - Candidate of Geology and Mineralogy, Senior Researcher, Head of GIS Department

65 Kim Yu Chen street, Khabarovsk 680000



T. V. Merkulova
Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS
Russian Federation

Tatiana V. Merkulova - Candidate of Geology and Mineralogy, Lead Researcher

65 Kim Yu Chen street, Khabarovsk 680000



References

1. Ashurkov S.V., San’kov V.A., Serov M.A., Luk’yanov P.Yu., Grib N.N., Bordonskii G.S., Dembelov M.G., 2016. Evaluation of present-day deformations in the Amurian Plate and its surroundings, based on GPS data. Russian Geology and Geophysics 57 (11), 1626–1634. https://doi.org/10.1016/j.rgg.2016.10.008.

2. Ben-Zion Y., 2008. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics 46 (4), RG4006. https://doi.org/10.1029/2008RG000260.

3. Caneva A., Smirnov V., 2004. Using the fractal dimension of earthquake distributions and the slope of the recurrence curve to forecast earthquakes in Colombia. Earth Sciences Research Journal 8 (1), 3–9.

4. Chen C.-C., Wang W.-C., Chang Y.-F., Wu Y.-M., Lee Y.-H., 2006. A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake. Geophysical Journal International 167 (3), 1215–1219. https://doi.org/10.1111/j.1365-246X.2006.03230.x.

5. CRUST 2.0. A New Global Crustal Model at 2x2 Degrees. Available from: http://igppweb.ucsd.edu/~gabi/crust2.html.

6. Didenko A.N., Kaplun V.B., Malyshev Yu.F., Shevchenko B.F., 2010. Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian Fold Belt. Russian Geology and Geophysics 51 (5), 492–506. https://doi.org/10.1016/j.rgg.2010.04.006.

7. Didenko A.N., Zakharov V.S., Gil’manova G.Z., Merkulova T.V., Arkhipov M.V., 2017. Formalized analysis of crustal seismicity in the Sikhote Alin Orogen and adjacent areas. Russian Journal of Pacific Geology 11 (2), 123–133. https://doi.org/10.1134/S1819714017020026.

8. Earthquakes in Russia, 2006–2013. Available from: http://www.gsras.ru/new/public/ (in Russian).

9. Earthquakes in the USSR, 1962–1991. Available from: http://www.wdcb.ru/sep/seismology/cat_USSR.ru.html (in Russian).

10. Earthquakes of North Eurasia, 1992–2013. Available from: http://www.gsras.ru/new/public/ (in Russian).

11. Goebel T.H.W., Kwiatek G., Becker T.W., Brodsky E.E., Dresen G., 2017. What allows seismic events to grow big? Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 45 (9), 815–818. https://doi.org/10.1130/G39147.1.

12. Gorelov P.V., Shkabarnya N.G., Nagornova N.A., 2016. Analysis of seismic activity and faults in Primorye. International Research Journal 7 (49), Part 4, 146–149 (in Russian) https://doi.org/10.18454/IRJ.2016.49.068.

13. Goryainov P.M., Ivanyuk G.Yu., 2001. Self-Organization of Mineral Systems. GEOS, Moscow, 312 p. (in Russian)

14. Grachev A.F. (Ed.), 1997. The Map of Recent Tectonics of Northern Eurasia. Scale of 1:5000000. Ministry of Natural Resources of the Russian Federation (MPR RF), Russian Academy of Sciences (in Russian)

15. Kasahara K., 1981. Earthquake Mechanics. Cambridge University Press, Cambridge, 272 p.

16. Khanchuk A.I. (Ed.), 2006. Geodynamics, Magmatism and Metallogeny of Eastern Russia. Dalnauka, Vladivostok, 981 p. (in Russian)

17. Klyuchevskiy A.V., Zuev F.L., Klyuchevskaya A.A., 2017. Patent for invention No. 2625627. Technique for determining the self-similarity indicator of the field of earthquake epicenters (in Russian)

18. Kondorskaya N.V., Shebalin N.V. (Eds.), 1977. New Catalog of Strong Earthquakes for the USSR Territory from the Ancient Times up to 1975. Nauka, Moscow, 536 p. (in Russian)

19. Konovalov A.V., Sychev A.S., 2014. A calibration curve of local magnitude and intermagnitude relations for Northern Sakhalin. Journal of Volcanology and Seismology 8 (6), 390–400. https://doi.org/10.1134/S0742046314060050.

20. Kossobokov V.G., Nekrasova A.K., 2004. The unified scaling law for earthquakes: the global map of parameters. In: V.I. Keilis-Borok, G.M. Molchan (Eds.), The analysis of geodynamic and seismic processes. Vychislitel’naya seismologiya (Computational Seismology), vol. 35. GEOS, Moscow, p. 160–175 (in Russian)

21. Levin B.V., Kim Chun Un, Nagornykh T.V., 2008. Seismicity of Primorye and Priamurye regions in 1888–2008. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences (6), 16–22 (in Russian)

22. Lukhnev A.V., San'kov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E., 2010. GPS rotation and strain rates in the Baikal-Mongolia region. Russian Geology and Geophysics 51 (7), 785–793. https://doi.org/10.1016/j.rgg.2010.06.006.

23. Mandelbrot B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman and Company, New York, 468 p.

24. Munafo I., Malagnini L., Chiaraluce L., 2016. On the relationship between Mw and ML for small earthquakes. Bulletin of the Seismological Society of America 106 (5), 2402–2408. https://doi.org/10.1785/0120160130.

25. Nava F.A., Márquez-Ramírez V.H., Zúñiga F.R., Ávila-Barrientos L., Quinteros C.B., 2017. Gutenberg-Richter b-value maximum likelihood estimation and sample size. Journal of Seismology 21 (1), 127–135. https://doi.org/10.1007/s10950-016-9589-1.

26. Nekrasova A.K., Kossobokov V.G., 2005. Temporal variations in the parameters of the unified scaling law for earthquakes in the eastern part of Honshu Island (Japan). Doklady Earth Sciences 405 (9), 1352–1356.

27. Nekrasova A.K., Kossobokov V.G., Parvez I.A., 2015. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions. Izvestiya, Physics of the Solid Earth 51 (2), 268–277. https://doi.org/10.1134/S1069351315010103.

28. Nikolaev V.V., 1992. Tan-Lu–Kur fault: basement structure and seismicity. In: Problems of tectonics, and energy and mineral resources. Amurian Division of the USSR Geographical Society, Far East Branch of RAS, Khabarovsk, p. 81–92 (in Russian)

29. Öncel A.O., Wilson T.H., Nishizawa O., 2001. Size scaling relationships in the active fault networks of Japan and their correlation with Gutenberg‐Richter b values. Journal of Geophysical Research: Solid Earth 106 (B10), 21827–21841. https://doi.org/10.1029/2000JB900408.

30. Ovsyuchenko A.N., Trofimenko S.V., Novikov S.S., Didenko A.N., Imaev V.S., 2018. The problems of seismic risk prediction for the territory of the Lower Amur Region: paleoseismogeological and seismological analysis. Russian Journal of Pacific Geology 12 (2), 135–150. https://doi.org/10.1134/S1819714018020045.

31. Petrov V.A., Anfu N., Smirnov V.B., Mostryukov A.O., Zhixiong L., Ponomarev A.V., Zaisen J., Xuhui S., 2008. Field of tectonic stresses from focal mjechanisms of earthquakes and recent crustal movements from GPS measurements in China. Izvestiya, Physics of the Solid Earth 44 (10), 846–855. https://doi.org/10.1134/S1069351308100121.

32. Rasskazov I.Yu., Saksin B.G., Petrov V.A., Shevchenko B.F., Usikov V.I., Gil’manova G.Z., 2014. Present-day stress-strain state in the upper crust of the Amurian lithosphere plate. Izvestiya, Physics of the Solid Earth 50 (3), 444–452. https://doi.org/10.1134/S1069351314030082.

33. Rautian T.G., Khalturin V.I., Fugita K., Mackey K.G., Kendall A.D., 2007. Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales. Seismological Research Letters 78 (6), 579–590. https://doi.org/10.1785/gssrl.78.6.579.

34. Robertson M.C., Sammis C.G., Sahimi M., Martin A.J., 1995. Fractal analysis of three‐dimensional spatial distributions of earthquakes with a percolation interpretation. Journal of Geophysical Research: Solid Earth 100 (B1), 609–620. https://doi.org/10.1029/94JB02463.

35. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V., 2013. “Lomonosov”: supercomputing at Moscow State University. In: Contemporary High Performance Computing. Chapman and Hall/CRC, Boca Raton, USA, p. 283–307.

36. Sadovsky M.A., 2004. Selected Contributions: Geophysics and Physics of Explosion. Nauka, Moscow, 439 p. (in Russian)

37. Sadovsky M.A., Pisarenko V.F., 1991. Seismic Process in the Block Medium. Nauka, Moscow, 96 p. (in Russian)

38. Safonov D.A. 2018. Seismic activity of the Amur and Primorye. Geosystems of Transition Zones 2 (2), 104–115 (in Russian) https://doi.org/10.30730/2541-8912.2018.2.2.104-115.

39. Sherman S.I., 2005. The nonstationary tectonophysical model of faults and its application to analysis of the seismic process in destructive zones of the lithosphere. Fizicheskaya Mezomechanika (Physical Mesomechanics) 8 (1), 71–80 (in Russian)

40. Sherman S.I., 2012. Destruction of the lithosphere: fault-block divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics 3 (4), 315–344. (in Russian) https://doi.org/10.5800/GT-2012-3-4-0077.

41. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House GEO, Novosibirsk, 359 p. (in Russian)

42. Sherman S.I., Sorokin A.P., Cheremnykh A.V., 2001. A new approach to tectonic regionalization of the Amur Region based on the fractal dimension of crustal faults. Doklady Earth Sciences 381A (9), 1020–1024.

43. Stakhovsky I.R., 2004. Interrelation between spatial and energy scalings of the seismic process. Izvestiya. Physics of the Solid Earth 40 (10), 849–855.

44. Stakhovsky I.R., 2017. Scale invariance of shallow seismicity and the prognostic signatures of earthquakes. PhysicsUspekhi 60 (5), 472–489. https://doi.org/10.3367/UFNe.2016.09.037970.

45. Stepashko A.A., Merkulova T.V., Didenko A.N., 2018. Geodynamics and regularities of seismicity in the eastern segment of the Amurian Plate. Russian Journal of Pacific Geology 12 (4), 263–277. https://doi.org/10.1134/S1819714018040061.

46. Torabi A., Berg S.S., 2011. Scaling of fault attributes: A review. Marine and Petroleum Geology 28 (8), 1444–1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003.

47. Turcotte D.L., 1997. Fractals and Chaos in Geology and Geophysics. 2nd edition. Cambridge University Press, Cambridge, 398 p.

48. . Ulomov V.I., 2009. Estimation of seismic hazard in the Primorye region. Inzhenernye Izyskaniya (1), 40–47 (in Russian)

49. Zabrodin V.Yu., 2017. Tectonics and evolution of the northeastern extremity of the East-Asian Rift Belt. Russian Journal of Pacific Geology 11 (3), 155–162. https://doi.org/10.1134/S1819714017030071.

50. Zabrodin V.Yu., Rybas O.V., Gil’manova G.Z., 2015. Fault Tectonics of the Russian Far East Mainland. Dalnauka, Vladivostok, 132 p. (in Russian)

51. Zakharov V.S., 2011. Analysis of the characteristics of self similarity of seismicity and the active fault network of Eurasia. Moscow University Geology Bulletin 66 (6), 385–392. https://doi.org/10.3103/S0145875211060123.

52. Zakharov V.S., 2012. Preliminary analysis of the self-similarity of the aftershocks of the Japanese earthquake on March 11, 2011. Moscow University Geology Bulletin 67 (2), 133–137. https://doi.org/10.3103/S0145875212020081.

53. Zhao D., Tian Y., 2013. Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link? Geophysical Journal International 195 (2), 706–724. https://doi.org/10.1093/gji/ggt289.


Review

For citations:


Zakharov V.S., Didenko A.N., Gil’manova G.Z., Merkulova T.V. CHARACTERISTICS OF SELF‐SIMILARITY OF SEISMICITY AND THE FAULT NETWORK OF THE SIKHOTE ALIN OROGENIC BELT AND THE ADJACENT AREAS. Geodynamics & Tectonophysics. 2019;10(2):541-559. https://doi.org/10.5800/GT-2019-10-2-0425

Views: 1098


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)