GENERAL PB‐ISOTOPE SYSTEMATICS OF SOURCES FOR VOLCANIC ROCKS OF THE LATEST GEODYNAMIC STAGE IN ASIA
https://doi.org/10.5800/GT-2019-10-2-0424
Abstract
The modern theory of the evolving Earth is based on integrated isotopic data obtained for the accessible part of the planet and cosmic bodies, in which the U–Pb isotope system plays a key role. The theory is tested by the isotope systematics of oceanic basalt sources. The origin of continental volcanic rocks is often interpreted in terms of the isotopic systematics of oceanic basalts. However, such interpretations, as a rule, reveal contradictions arising from differences in the history and current mantle dynamics of oceans and continents. Under the oceans, a mantle material has long lost connection with the accessible Earth tectonic units; under the continents such a connection is often established. The nature of the evolution of deep‐seated processes under the continents remains uncertain and, by analogy with the oceans, requires deciphering in terms of the components of the mantle sources for volcanic rocks. In modern lithospheric plates of the Earth, there are regions ranging in width from hundreds to thousands of kilometers, which are characterized by high strain rates and, consequently, at least one to two orders of magnitude lower viscosity relative to that of the internal stable parts of the plates. This gives them a special structural status of “dispersed plate boundaries”. The isotope‐geochemical studies of volcanic rocks from regions of the unstable Asia revealed the different nature of components in sources, for which particular interpretations have been proposed. In this paper, a general systematics of sources is defined for volcanic rocks of the latest geodynamic stage in Asia through estimating the incubation time on the 207Pb/204Pb versus 206Pb/204Pb diagram. Two domains are designated: (1) low 238U/204Pb (LOMU) derived from the viscous protomantle (VIPMA), and (2) elevated 238U/204Pb (ELMU). The mantle domains evolved from the Earth's primary material between 4.51 and 4.36 Gyr ago, 4.0 and 3.7 Gyr ago, 2.9 and 2.6 Gyr ago, 2.0 and 1.8 Gyr ago, about 0.66 Gyr ago and <0.09 Gyr ago. Melting anomalies of ELMU sources characterize the unstable mantle of Southern Asia, and those of LOMU sources belong to the Japan‐Baikal geodynamic corridor of the transitional region between the unstable mantle of Asia and its stable core. The Late Cenozoic evolution of the Japan‐Baikal geodynamic corridor resulted in cutting the LOMU domain by the Jeju‐Vitim ELMU source line.
About the Authors
S. V. RasskazovRussian Federation
Sergei V. Rasskazov - Doctor of Geology and Mineralogy, Professor, Head of Laboratory
128 Lermontov street, Irkutsk 664033,
3 Lenin street, Irkutsk 664003
I. S. Chuvashova
Russian Federation
Irina S. Chuvashova - Candidate of Geology and Mineralogy, Senior Researcher
128 Lermontov street, Irkutsk 664033,
3 Lenin street, Irkutsk 664003
Т. A. Yasnygina
Russian Federation
Tatiana A. Yasnygina - Candidate of Geology and Mineralogy, Senior Researcher
128 Lermontov street, Irkutsk 664033
Yi‐min Sun
China
Sun Yi-min - Researcher
Wudalianchi 164155, Heilongjiang
Е. V. Saranina
Russian Federation
Elena V. Saranina - Candidate of Geology and Mineralogy, Senior Researcher
128 Lermontov street, Irkutsk 664033
References
1. Albarède F., 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461 (7268), 1227–1233. https://doi.org/10.1038/nature08477.
2. Albarède F., Ballhaus C., Blichert-Toft J., Lee C.-T., Marty B., Moynier F., Yin Q.-Z., 2013. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222 (1), 44–52. https://doi.org/10.1016/j.icarus.2012.10.026.
3. Allègre C.J., 1997. Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth. Earth and Planetary Science Letters 150 (1–2), 1–6. https://doi.org/10.1016/S0012-821X(97)00072-1.
4. Allègre C., 2002. The evolution of mantle mixing. Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360 (1800), 2411–2431. https://doi.org/10.1098/rsta.2002.1075.
5. Allègre C.J., 2008. Isotope Geology. Second edition. Cambridge University Press, Cambridge, 512 p.
6. Allègre C.J., Dupré B., Brévart O., 1982. Chemical aspects of the formation of the core. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences 306 (1492), 49–59. https://doi.org/10.1098/rsta.1982.0065.
7. Basu A.R., Junwen W., Wankang H., Guanghong X., Tatsumoto M., 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105 (1–3), 149–169. https://doi.org/10.1016/0012-821X(91)90127-4.
8. Becker T.W., Kellogg J.B., O’Connell R.J., 1999. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth and Planetary Science Letters 171 (3), 351–365. https://doi.org/10.1016/S0012-821X(99)00160-0.
9. Bertranda H., Chazotb G., Blichert-Toft J., Thorala S., 2003. Implications of widespread high-μ volcanism on the Arabian Plate for Afar mantle plume and lithosphere composition. Chemical Geology 198 (1–2), 47–61. https://doi.org/10.1016/S0009-2541(02)00418-7.
10. Blichert-Toft J., Zanda B., Ebel D.S., Albarède F., 2010. The solar system primordial lead. Earth and Planetary Science Letters 300 (1–2), 152–163. https://doi.org/10.1016/j.epsl.2010.10.001.
11. Bottke W.F., Nesvornỳ D., Vokrouhlický D., Morbidelli A., 2010. The irregular satellites: The most collisionally evolved populations in the Solar System. The Astronomical Journal 139 (3), 994–1014. https://doi.org/10.1088/00046256/139/3/994.
12. Bowring S.A., Housh T., 1995. The Earth's early evolution. Science 269 (5230), 1535–1540. https://doi.org/10.1126/science.7667634.
13. Bowring S.A., Williams I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology 134 (1), 3–16. https://doi.org/10.1007/s004100050465.
14. Brenna M., Cronin S.J., Smith I.E.M., Sohn Y.K., Maas R., 2012. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 148, 337–352. https://doi.org/10.1016/j.lithos.2012.06.021.
15. Bunge H.P., Richards M.A., Baumgardner J.R., 1996. Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379 (6564), 436–438. https://doi.org/10.1038/379436a0.
16. Caro G., Bourdon B., Birck J., Moorbath S., 2003. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature 423 (6938), 428–432. https://doi.org/10.1038/nature01668.
17. Chandrasekharam D., Mahoney J.J., Sheth H.C., Duncan R.A., 1999. Elemental and Nd-Sr-Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal of Volcanology and Geothermal Research 93 (1–2), 111–123. https://doi.org/10.1016/S0377-0273(99)00081-5.
18. Chen Y., Zhang Y., Graham D., Su S., Deng J., 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96 (1–2), 108–126. https://doi.org/10.1016/j.lithos.2006.09.015.
19. Choi H.-O., Choi S.H., Yu Y., 2014. Isotope geochemistry of Jeongok basalts, northernmost South Korea: implications for the enriched mantle end-member component. Journal of Asian Earth Sciences 91, 56–68. https://doi.org/10.1016/j.jseaes.2014.05.010.
20. Choi S.H., Mukasa S.B., Kwon S.-T., Andronikov A.V., 2006. Sr, Nd, Pb and Hf isotopic compositions of Late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology 232 (3–4), 134–151. https://doi.org/10.1016/j.chemgeo.2006.02.014.
21. Chou C.L., 1978. Fractionation of siderophile elements in the Earth ’s upper mantle. In: Lunar and Planetary Science Conference Proceedings, vol. 9, p. 219–230.
22. Chuvashova I., Rasskazov S., Sun Yi-min, Yang Chen, 2017b. Origin of melting anomalies in the Japan-Baikal corridor of Asia at the latest geodynamic stage: evolution from the mantle transition layer and generation by lithospheric transtension. Geodynamics & Tectonophysics 8 (3), 435–440. https://doi.org/10.5800/GT-2017-8-3-0256.
23. Chuvashova I.S., Rasskazov S.V., Yi‐min Sun, 2017a. The latest geodynamics in Central Asia: primary and secondary mantle melting anomalies in the context of orogenesis, rifting, and lithospheric plate motions and interactions. Geodynamics & Tectonophysics 8 (1), 45–80 (in Russian) https://doi.org/10.5800/GT-2017-8-1-0232.
24. Connelly J.N., Bizzarro M., Krot A.N., Nordlund A., Wielandt D., Ivanova M.A., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338 (6107), 651–655. https://doi.org/10.1126/science.1226919.
25. Dale C.W., Burton K.W., Greenwood R.C., Gannoun A., Wade J., Wood B.J., Pearson D.G., 2012. Late accretion on the earliest planetesimals revealed by the highly siderophile elements. Science 336 (6077), 72–75. https://doi.org/10.1126/science.1214967.
26. Dale C.W., Kruijer T.S., Burton K.W., 2017. Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland. Earth and Planetary Science Letters 458, 394–404. https://doi.org/10.1016/j.epsl.2016.11.001.
27. Dhaliwal J.K., Day J.M.D., Moynier F., 2018. Volatile element loss during planetary magma ocean phases. Icarus 300, 249–260. https://doi.org/10.1016/j.icarus.2017.09.002.
28. Dickin A.P., 2018. Radiogenic Isotope Geology. Third edition. Cambridge University Press, Cambridge, 477 p.
29. Diwu C., Sun Y., Wilde S.A., Wang H., Dong Z., Zhang H., Wang Q., 2013. New evidence for ~4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research 23 (4), 1484–1490. https://doi.org/10.1016/j.gr.2013.01.001.
30. Fan Q.-C., Chen S.-S., Zhao Y.-W., Zou H.-B., Li N., Sui J.-L., 2014. Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China. Lithos 206–207, 289–302. https://doi.org/10.1016/j.lithos.2014.08.007.
31. Gaffney A.M., Borg L.E., 2014. A young solidification age for the lunar magma ocean. Geochimica et Cosmochimica Acta 140, 227–240. https://doi.org/10.1016/j.gca.2014.05.028.
32. Gao Y., Wei R., Hou Z., Tian Sh., Zhao R., 2008. Eocene high-MgO volcanism in southern Tibet: new constraints for mantle source characteristics and deep processes. Lithos 105 (1–2), 63–72. https://doi.org/10.1016/j.lithos.2008.02.008.
33. Gatinsky Y.G., Rundquist D.V., 2004. Geodynamics of Eurasia: plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.
34. Granet M., Wilson M., Achauer U., 1995. Imaging a mantle plume beneath the French Massif Central. Earth and Planetary Science Letters 136 (3–4), 281–296. https://doi.org/10.1016/0012-821X(95)00174-B.
35. Gu Y.J., Dziewonski A.M., Su W., Ekström G., 2001. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. Journal of Geophysical Research: Solid Earth 106 (B6), 11169–11199. https://doi.org/10.1029/2001JB000340.
36. Guo Z., Wilson M., Liu J., Mao Q., 2006. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology 47 (6), 1177–1220. https://doi.org/10.1093/petrology/egl007.
37. Guo Z., Wilson M., Liu J., 2007. Post-collisional adakites in south Tibet: products of partial melting of subductionmodified lower crust. Lithos 96 (1–2), 205–224. https://doi.org/10.1016/j.lithos.2006.09.011.
38. Hanan B.B., Graham D.W., 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272 (5264), 991–995. https://doi.org/10.1126/science.272.5264.991.
39. Hart S.R., Gaetani G.A., 2006. Mantle Pb paradoxes: the sulfide solution. Contributions to Mineralogy and Petrology 152 (3), 295–308. https://doi.org/10.1007/s00410-006-0108-1.
40. Hart S.R., Gerlach D.C., White W.M., 1986. A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochimica et Cosmochimica Acta 50 (7), 1551–1557. https://doi.org/10.1016/0016-7037(86)90329-7.
41. Hauri E.H., Whitehead J.A., Hart S.R., 1994. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. Journal of Geophysical Research: Solid Earth 99 (B12), 24275–24300. https://doi.org/10.1029/94JB01257.
42. He S.P., Li R.S., Wang C., Zhang H.F., Ji W.H., Yu P.S., Gu P.Y., Shi C., 2011. Discovery of ~4.0 detrital zircons in the Changdu block, North Qiangtang, Tibetan Plateau. Chinese Science Bulletin 56 (7), 647–658. https://doi.org/10.1007/s11434-010-4320-z.
43. Hoang N., Flower M.F., Carlson R.W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta 60 (22), 4329–4351. https://doi.org/10.1016/S0016-7037(96)00247-5.
44. Hoàng N., Flower M.F., Xuân P.T., Quý H.V., Sơn T.T., 2013. Collision-induced basalt eruptions at Pleiku and Buôn Mê Thuột, south-central Viet Nam. Journal of Geodynamics 69, 65–83. https://doi.org/10.1016/j.jog.2012.03.012.
45. Iizuka T., Horie K., Komiya T., Maruyama S., Hirata T., Hidaka H., Windley B.F., 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology 34 (4), 245–248. https://doi.org/10.1130/G22124.1.
46. Ji J.Q., Han B.F., Zhu M.F., Chu Z.Y., Liu Y.L., 2006. Cretaceous–Paleogene alkaline magmatism in Tuyon basin, southwest Tianshan mountains: geochronology, petrology and geochemistry. Acta Petrologica Sinica 22 (5), 1324–1340.
47. Kleine T., Touboul M., Bourdon B., Nimmo F., Mezger K., Palme H., Jacobsen S.B., Yin Q.-Z., Halliday A.N., 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta 73 (17), 5150–5188. https://doi.org/10.1016/j.gca.2008.11.047.
48. Kozhevnikov V.M., Seredkina A.I., Solovei O.A., 2014. 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion. Russian Geology and Geophysics 55 (10), 1239–1247. https://doi.org/10.1016/j.rgg.2014.09.010.
49. Kreemer C., Holt W.E., Haines A.J., 2003. An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International 154 (1), 8–34. https://doi.org/10.1046/j.1365-246X.2003.01917.x.
50. Kruijer T.S., Kleine T., Fischer-Gödde M., Sprung P., 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520 (7548), 534–537. https://doi.org/10.1038/nature14360.
51. Kuritani T., Kimura J.I., Ohtani E., Miyamoto H., Furuyama K., 2013. Transition zone origin of potassic basalts from Wudalianchi volcano, Northeast China. Lithos 156–159, 1–12. https://doi.org/10.1016/j.lithos.2012.10.010.
52. Kuz’min M.I., 2014. The Precambrian history of the origin and evolution of the Solar System and Earth. Part 1. Geodynamics & Tectonophysics 5 (3), 625–640 (in Russian) https://doi.org/10.5800/GT-2014-5-3-0146.
53. Liu D.Y., Nutman A.P., Compston W., Wu J.S., Shen Q.H., 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20 (4), 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2.
54. Lustrino M., Wilson M., 2007. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Science Reviews 81 (1–2), 1–65. https://doi.org/10.1016/j.earscirev.2006.09.002.
55. Marchi S., Canup R.M., Walker R.J., 2018. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nature Geoscience 11 (1), 77–81. https://doi.org/10.1038/s41561-017-0022-3.
56. Maruyama S., Ebisuzaki T., 2017. Origin of the Earth: A proposal of new model called ABEL. Geoscience Frontiers 8 (2), 253–274. https://doi.org/10.1016/j.gsf.2016.10.005.
57. Maruyama S., Santosh M., Zhao D., 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and antiplate tectonics on the core–mantle boundary. Gondwana Research 11 (1–2), 7–37. https://doi.org/10.1016/j.gr.2006.06.003.
58. Melluso L., Mahoney J.J., Dallai L., 2006. Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos 89 (3–4), 259–274. https://doi.org/10.1016/j.lithos.2005.12.007.
59. Menzies M.A. (Ed.), 1990. Continental Mantle. Clarendon Press, Oxford, 177 p.
60. Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419.
61. Morbidelli A., Nesvorny D., Laurenz V., Marchi S., Rubie D.C., Elkins-Tanton L., Wieczorek M., Jacobson S., 2018. The timeline of the Lunar bombardment – revisited. Icarus 305, 262–276. https://doi.org/10.1016/j.icarus.2017.12.046.
62. Morgan W.J., 1971. Convection plumes in the lower mantle. Nature 230 (5288), 42–43. https://doi.org/10.1038/230042a0.
63. Morino P., Caro G., Reisberg L., 2018. Differentiation mechanisms of the early Hadean mantle: insights from combined 176Hf-142,143Nd signatures of Archean rocks from the Saglek Block. Geochimica et Cosmochimica Acta 240, 43–63. https://doi.org/10.1016/j.gca.2018.08.026.
64. Müller R.D., Sdrolias M., Gaina C., Roest W.R., 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9 (4), Q04006. https://doi.org/10.1029/2007GC001743.
65. Murphy D.T., Kamber B.S., Collerson K.D., 2003. A refined solution to the first terrestrial Pb-isotope paradox. Journal of Petrology 44 (1), 39–53. https://doi.org/10.1093/petrology/44.1.39.
66. O'Neil J., Carlson R.W., Francis D., Stevenson R.K., 2008. Neodymium-142 evidence for Hadean mafic crust. Science 321 (5897), 1828–1831. https://doi.org/10.1126/science.1161925.
67. Park K.H., Park J.B., Cheong C.S., Oh C.W., 2005. Sr, Nd and Pb isotopic systematics of the Cenozoic basalts of the Korean Peninsula and their implications for the Permo-Triassic continental collision boundary. Gondwana Research 8 (4), 529–538. https://doi.org/10.1016/S1342-937X(05)71153-9.
68. Parman S.W., 2007. Helium isotopic evidence for episodic mantle melting and crustal growth. Nature 446 (7138), 900–903. https://doi.org/10.1038/nature05691.
69. Paul D.K., Ray A., Das B., Patil S.K., Biswas S.K., 2008. Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos 102 (1–2), 237–259. https://doi.org/10.1016/j.lithos.2007.08.005.
70. Peng Z.X., Mahoney J., Hooper P., Harris C., Beane J., 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica et Cosmochimica Acta 58 (1), 267–288. https://doi.org/10.1016/0016-7037(94)90464-2.
71. Peng Z.X., Mahoney J.J., Vanderkluysen L., Hooper P.R., 2014. Sr, Nd and Pb isotopic and chemical compositions of central Deccan Traps lavas and relation to southwestern Deccan stratigraphy. Journal of Asian Earth Sciences 84, 83–94. https://doi.org/10.1016/j.jseaes.2013.10.025.
72. Rasskazov S.V., Bowring S.A., Hawsh T., Demonterova E.I., Logachev N.A., Ivanov A.V., Saranina E.V., Maslovskaya M.N., 2002. The Pb, Nd, and Sr isotope systematics in heterogeneous continental lithosphere above the convecting mantle domain. Doklady Earth Sciences 387A (9), 1056–1059.
73. Rasskazov S.V., Brandt S.B., Brandt I.S., 2010. Radiogenic Isotopes in Geologic Processes. Springer, 306 p. https://doi.org/10.1007/978-90-481-2999-7.
74. Rasskazov S.V., Chuvashova I.S., 2013. Global and regional expressions of the latest geodynamic stage. Bulletin of Moscow Society of Naturalists, Geological section 88 (4), 21–35 (in Russian)
75. Rasskazov S.V., Chuvashova I.S., 2018. Volcanism and Transtension in the Northeastern Baikal Rift System. Academic Publishing House «GEO», Novosibirsk, 384 p. (in Russian) https://doi.org/10.21782/B978-5-6041446-3-3.
76. Rasskazov S.V., Chuvashova I.S., Mikolaichuk A.V., Sobel E.R., Yasnygina T.A., Fefelov N.N., Saranina E.V., 2015. Lateral change of sources for the Cretaceous – Paleogene magmatism of the Tian Shan. Petrology 23 (3), 281–308. https://doi.org/10.1134/S0869591115010038.
77. Rasskazov S.V., Chuvashova I.S., Sun Yi-min, Yang Chen, Xie Zhenhua, Yasnygina T.А., Saranina E.V., Zhengxing Fang, 2016. Sources of Quaternary potassic volcanic rocks from Wudalianchi, China: Control by transtension at the lithosphere– asthenosphere boundary layer. Geodynamics & Tectonophysics 7 (4), 555–592. https://doi.org/10.5800/GT-2016-7-4-0223.
78. Rasskazov S.V., Mel’nikov O.A., Rybin A.V., Gur’yanov V.A., Yasnygina T.A., Brandt I.S., Brandt S.B., Saranina E.V., Maslovskaya M.N., Fefelov N.N., Zharov A.E., 2005. Spatial change of deep sources for Cenozoic volcanic rocks in western coast of South Sakhalin. Tikhookeanskaya Geologiya 24 (2), 10–32 (in Russian)
79. Rasskazov S., Sun Yi-min, Chuvashova I., Yasnygina T., Yang Chen, Xie Zhenhua, Saranina E., Gerasimov N., Vladimirova T., 2019. Origin of sources for potassic rocks from Wudalianchi, Northeast China: Case study of the Longmenshan and Molabushan volcanoes. Geochemica Acta (in press).
80. Rasskazov S.V., Yasnygina T.A., Chuvashova I.S., 2014. Mantle sources of the cenozoic volcanic rocks of East Asia: derivatives of slabs, the sublithospheric convection, and the lithosphere. Russian Journal of Pacific Geology 8 (5), 360–378. https://doi.org/10.1134/S1819714014050030.
81. Rubie D.C., Frost D.J., Mann U., Asahara Y., Nimmo F., Tsuno K., Kegler P., Holzheid A., Palme H., 2011. Heterogeneous accretion, composition and core – mantle differentiation of the Earth. Earth and Planetary Science Letters 301 (1–2), 31–42. https://doi.org/10.1016/j.epsl.2010.11.030.
82. Rudolph M.L., Lekić V., Lithgow-Bertelloni C., 2015. Viscosity jump in Earth’s mid-mantle. Science 350 (6266), 1349– 1352. https://doi.org/10.1126/science.aad1929.
83. Sakuyama T., Nagaoka S., Miyazaki T., Chang Q., Takahashi T., Hirahara Y., Senda R., Itaya T., Kimura J., Ozawa K., 2014. Melting of the uppermost metasomatized asthenosphere triggered by fluid fluxing from ancient subducted sediment: Constraints from the Quaternary basalt lavas at Chugaryeong Volcano, Korea. Journal of Petrology 55 (3), 499–528. https://doi.org/10.1093/petrology/egt074.
84. Sandwell D.T., Anderson D., Wessel P., 2005. Global tectonic maps. In: G.L. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson (Eds.), Plates, plumes and paradigms. Geological Society of America Special Paper, vol. 388, p. 1–10. https://doi.org/10.1130/0-8137-2388-4.1.
85. Sen G., Bizimis M., Das R., Paul D.K., Ray A., Biswas S., 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters 277 (1–2), 101–111. https://doi.org/10.1016/j.epsl.2008.10.002.
86. Şengör A.M., Natal’in B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: A. Yin, M. Harrison (Eds.), The tectonic evolution of Asia. Cambridge University Press, Cambridge, p. 486–640.
87. Sheth H.C., Melluso L., 2008. The Mount Pavagadh volcanic suite, Deccan Traps: geochemical stratigraphy and magmatic evolution. Journal of Asian Earth Sciences 32 (1), 5–21. https://doi.org/10.1016/j.jseaes.2007.10.001.
88. Snape J.F., Nemchin A.A., Bellucci J.J., Whitehouse M.J., Tartèse R., Barnes J.J., Anand M., Crawford I.A., Joy K.H., 2016. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth and Planetary Science Letters 451, 149–158. https://doi.org/10.1016/j.epsl.2016.07.026.
89. Sobel E.R., Arnaud N., 2000. Cretaceous–Paleogene basaltic rocks of the Tuyon basin, NW China and the Kyrgyz Tian Shan: the trace of a small plume. Lithos 50 (1–3), 191–215. https://doi.org/10.1016/S0024-4937(99)00046-8.
90. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434 (7033), 590–597. https://doi.org/10.1038/nature03411.
91. Song Y., Frey F.A., Zhi H., 1990. Isotopic characteristics of Hannuoba basalts, eastern China: implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology 88 (1–2), 35–52. https://doi.org/10.1016/0009-2541(90)90102-D.
92. Sprung P., Kleine T., Scherer E.E., 2013. Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth and Planetary Science Letters 380, 77–87. https://doi.org/10.1016/j.epsl.2013.08.018.
93. Stacey J.S., Kramers J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.
94. Tatsumi Y., Maruyama S., Nohda S., 1990. Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection. Tectonophysics 181 (1–4), 299–306. https://doi.org/10.1016/0040-1951(90)90023-2.
95. Tatsumi Y., Shukuno H., Yoshikawa M., Chang Q., Sato K., Lee M.W., 2005. The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology 46 (3), 523–553. https://doi.org/10.1093/petrology/egh087.
96. Tatsumoto M., 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth and Planetary Science Letters 38 (1), 63–87. https://doi.org/10.1016/0012-821X(78)90126-7.
97. Tatsumoto M., Basu A.R., Wankang H., Junwen W., Xie G., 1992. Sr, Nd, and Pb isotopes of ultramaphic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113 (1–2), 107–128. https://doi.org/10.1016/0012-821X(92)90214-G.
98. Touboul M., Puchtel I.S., Walker R.J., 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science 335 (6072), 1065–1069. https://doi.org/10.1126/science.1216351.
99. Tucker J.M., Mukhopadhyay S., 2014. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth and Planetary Science Letters 393, 254–265. https://doi.org/10.1016/j.epsl.2014.02.050.
100. Turner S., Arnald N., Liu J., Rogers N., Hawkesworth C., Harris N., Kelley S., Van Calsteren P., Deng W., 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37 (1), 45–71. https://doi.org/10.1093/petrology/37.1.45.
101. Wade J., Wood B.J., 2005. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters 236 (1–2), 78–95. https://doi.org/10.1016/j.epsl.2005.05.017.
102. Wade J., Wood B.J., 2016. The oxidation state and mass of the Moon-forming impactor. Earth and Planetary Science Letters 442, 186–193. https://doi.org/10.1016/j.epsl.2016.02.053.
103. Wee S.M., 1999. Geochemistry and petrogenesis of Jeungok basalts in mid-Korean peninsula. Journal of Mineralogy, Petrology and Economic Geology 94 (6), 222–240. https://doi.org/10.2465/ganko.94.222.
104. White W.M., 2015. Probing the Earth’s deep interior through geochemistry. Geochemical Perspectives 4 (2), 95–251. https://doi.org/10.7185/geochempersp.4.2.
105. Wilde S.A., Valley J.W., Peck W.H., Graham C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409 (6817), 175–178. https://doi.org/10.1038/35051550.
106. Willbold M., Elliott T., Moorbath S., 2011. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477 (7363), 195–199. https://doi.org/10.1038/nature10399.
107. Wood B.J., Halliday A.N., Rehkämper M., 2010. Volatile accretion history of the Earth. Nature 467 (7319), E6–E7. https://doi.org/10.1038/nature09484.
108. Wood B.J., Walter M.J., Wade J., 2006. Accretion of the Earth and segregation of its core. Nature 441 (7095), 825–833. https://doi.org/10.1038/nature04763.
109. Xu Z., Zheng Y.F., 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. Journal of Asian Earth Sciences 145, 233–259. https://doi.org/10.1016/j.jseaes.2017.03.010.
110. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7.
111. Yoshida M., 2010. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth and Planetary Science Letters 295 (1–2), 205–218. https://doi.org/10.1016/j.epsl.2010.04.001.
112. Yoshida M., Santosh M., 2011. Supercontinents, mantle dynamics and plate tectonics: a perspective based on concepttual vs. numerical models. Earth-Science Reviews 105 (1–2), 1–24. https://doi.org/10.1016/j.earscirev.2010.12.002.
113. Zartman R.E., Futa K., Peng Z.C., 1991. A comparison of Sr‐Nd‐Pb isotopes in young and old continental lithospheric mantle: Patagonia and Eastern China. Australian Journal of Earth Sciences 38 (5), 545–557. https://doi.org/10.1080/08120099108727990.
114. Zatman S., Gordon R.G., Mutnuri K., 2005. Dynamics of diffuse oceanic plate boundaries: insensitivity to rheology. Geophysical Journal International 162 (1), 239–248. https://doi.org/10.1111/j.1365-246X.2005.02622.x.
115. Zhang M., Guo Z., 2016. Origin of Late Cenozoic Abaga–Dalinuoer basalts, eastern China: Implications for a mixed pyroxenite–peridotite source related with deep subduction of the Pacific slab. Gondwana Research 37, 130–151. https://doi.org/10.1016/j.gr.2016.05.014.
116. Zhang M., Guo Z., Liu J., Liu G., Zhang L., Lei M., Zhao W., Ma L., Sepe V., Ventura G. 2018. The intraplate Changbaishan volcanic fild (China/North Korea): A review on eruptive history, magma genesis, geodynamic signifiance, recent dynamics and potential hazards. Earth-Science Reviews 187, 19–52. https://doi.org/10.1016/j.earscirev.2018.07.011.
117. Zhang M., Suddaby P., Thompson R.N., Thirlwall M.F., Menzies M.A., 1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology 36 (5), 1275–1303. https://doi.org/10.1093/petrology/36.5.1275.
118. Zhang Z., Xiao X., Wang J., Wang Y., Kusky T.M., 2008. Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis. Journal of Asian Earth Sciences 31 (4–6), 379–403. https://doi.org/10.1016/j.jseaes.2007.06.003.
119. Zhao D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Research 15 (3–4), 297–323. https://doi.org/10.1016/j.gr.2008.07.003.
120. Zhi X., Song Y., Frey F.A., Feng J., Zhai M., 1990. Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology 88 (1–2), 1–33. https://doi.org/10.1016/00092541(90)90101-C.
121. Zindler A., Hart S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425.
122. Zonenshain L.P., Kuzmin M.I., Bocharova N.Y., 1991. Hot-field tectonics. Tectonophysics 199 (2–4), 165–192. https://doi.org/10.1016/0040-1951(91)90171-N.
123. Zou H., Zindler A., Xu X., Qi Q., 2000. Major, trace element, and Nd, Sr, and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology 171 (1–2), 33–47. https://doi.org/10.1016/S0009-2541(00)00243-6.
Review
For citations:
Rasskazov S.V., Chuvashova I.S., Yasnygina Т.A., Sun Y., Saranina Е.V. GENERAL PB‐ISOTOPE SYSTEMATICS OF SOURCES FOR VOLCANIC ROCKS OF THE LATEST GEODYNAMIC STAGE IN ASIA. Geodynamics & Tectonophysics. 2019;10(2):507-539. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0424