Preview

Geodynamics & Tectonophysics

Advanced search

THE ROLE OF MAGMATIC HEAT SOURCES IN THE FORMATION OF REGIONAL AND CONTACT METAMORPHIC AREAS IN WEST SANGILEN (TUVA, RUSSIA)

https://doi.org/10.5800/GT-2019-10-2-0416

Abstract

The tectonomagmatic evolution of the Sangilen massif has been described in detail in numerous publications, but little attention was given to heat sources related to the HT/LP metamorphism. Modeling of the magma transport to the upper‐crust levels in West Sangilen shows that the NT/LP metamorphism is related to gabbromonodiorite intrusions. This article is focused on the thermo‐mechanical modeling of melting and lifting of melts in the crust, taking into account the density interfaces. The model of the Erzin granitoid massif shows that in case of fractional melting, the magma ascent mechanism is fundamentally different, as opposed to diapir upwelling – percolation take place along a magmatic channel or a system of channels. An estimated rate of diapiric rise in the crust amounts to 0.8 cm/yr, which is more than an order of magnitude lower than the rate of melt migration in case of fractional melting (25 cm/yr). In our models, a metamorphic thermal ‘anticline’ develops in stages that differ, probably, due to the modes of crust melting: batch melting occurs at the first stage, and fractional melting takes place at the second stage. It is probable that the change of melting modes from melting conditions in a ‘closed’ system to fractional melting conditions in ‘open’ systems is determined by tectonic factors. For the Sangilen massif, we have estimated the degrees of melting in the granulite, granite, and sedimentary‐metamorphic layers of the crust (6, 15, and 5 vol. %, respectively).

About the Authors

O. P. Polyansky
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation
Oleg P. Polyansky - Doctor of Geology and Mineralogy, Head of Laboratory

3 Academician Koptyug ave, Novosibirsk 630090



S. A. Kargopolov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS; Novosibirsk State University
Russian Federation
Sergei A. Kargopolov - Candidate of Geology and Mineralogy, Researcher

3 Academician Koptyug ave, Novosibirsk 630090, 

2 Pirogov street, Novosibirsk 630090



A. E. Izokh
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Andrei E. Izokh - Doctor of Geology and Mineralogy, Professor

3 Academician Koptyug ave, Novosibirsk 630090, 

2 Pirogov street, Novosibirsk 630090



A. N. Semenov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation

Aleksander N. Semenov - Post Graduate Student

3 Academician Koptyug ave, Novosibirsk 630090



A. V. Babichev
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation
Aleksei V. Babichev- Candidate of Physics and Mathematics, Senior Researcher 

3 Academician Koptyug ave, Novosibirsk 630090



A. N. Vasilevsky
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Aleksander N. Vasilevsky - Researcher

3 Academician Koptug ave., Novosibirsk 630090, 

2 Pirogov street, Novosibirsk 630090



References

1. ANSYS Fluent Theory Guide, 2009. Release 12.1.

2. Bea F., 2012. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291. https://doi.org/10.1016/j.lithos.2012.01.017.

3. Brown M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34 (11), 961–964. https://doi.org/10.1130/G22853A.1.

4. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193–234. https://doi.org/10.2747/0020-6814.49.3.193.

5. Clemens J.D., 2006. Melting of the continental crust: Fluid regimes, melting reactions, and source-rock fertility. In: M. Brown, T. Rushmer (Eds.), Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, p. 297–331.

6. Droop G.T.R., Brodie K.H., 2012. Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. Journal of Metamorphic Geology 30 (8), 843–864. https://doi.org/10.1111/j.1525-1314.2012.01001.x.

7. Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E., 2006. The lithosphere beneath the Sangilen Plateau, Siberia: Evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineralogy and Petrology 88 (3–4), 419–441. https://doi.org/10.1007/s00710-006-0121-0.

8. Elliot T., Spiegelman M., 2003. Melt migration in oceanic crustal production: a U-series perspective. In: R.L. Rudnick (Ed.), Treatise in geochemistry. Vol. 3. The crust. Elsevier-Pergamon, Oxford, p. 465–510.

9. Hewitt I.J., 2010. Modelling melting rates in upwelling mantle. Earth and Planetary Science Letters 300 (3–4), 264–274. https://doi.org/10.1016/j.epsl.2010.10.010.

10. Izokh A.E., Kargopolov S.A., Shelepaev R.A., Travin A.V., Egorova V.V., 2001. The basic magmatism of the CambrianOrdovician stage of the Altai-Sayan folded region and the connection with it of the metamorphism of high temperatures and low pressures. In: Actual problems of geology and minerageny of Southern Siberia. Conference materials. Publishing House of Lavrentiev Institute of Hydrodynamics SB RAS, Novosibirsk, p. 68–72 (in Russian)

11. Kargopolov S.A., 1991. Metamorphism of the Mugur zonal complex. Geologiya i Geofizika (Russian Geology and Geophysics) 32 (3), 109–119 (in Russian)

12. Karmysheva I.V., Vladimirov V.G., Vladimirov A.G., Shelepaev R.A., Yakovlev V.A., Vasyukova E.A., 2015. Tectonic position of mingling dykes in accretion-collision system of Early Caledonides of West Sangilen (South-East Tuva, Russia). Geodynamics & Tectonophysics 6 (3), 289–310. https://doi.org/10.5800/GT-2015-6-3-0183.

13. . Kelsey D.E., Hand M., 2015. On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6 (3), 311–356. https://doi.org/10.1016/j.gsf.2014.09.006.

14. Kozakov I.K., Sal’nikova E.B., Bibikova E.V., Kirnozova T.I., Kotov A.B., Kovach V.P., 1999. Polychronous evolution of the paleozoic granitoid magmatism in the Tuva-Mongolia massif: U-Pb geochronological data. Petrology 7 (6), 592–601.

15. Kronenberg A.K., Tullis J., 1984. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research: Solid Earth 89 (B6), 4281–4297. https://doi.org/10.1029/JB089iB06p04281.

16. . Nahodilová R., Faryad Sh. W., Dolejšac D., Tropper P., Konzett J., 2011. High-pressure partial melting and melt loss in felsic granulites in the Kutná Hora complex, Bohemian Massif (Czech Republic). Lithos 125 (1–2), 641–658. https://doi.org/10.1016/j.lithos.2011.03.017.

17. Pattison D.R.M., Chako T., Farquhar J., McFarlane C.R.M., 2003. Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected from retrograde exchange. Journal of Petrology 44 (5), 867–900. https://doi.org/10.1093/petrology/44.5.867.

18. Polyansky O.P., Babichev A.V., Korobeynikov S.N., Reverdatto V.V., 2010. Computer modeling of granite gneiss diapirism in the Earth’s crust: Controlling factors, duration, and temperature regime. Petrology 18 (4), 432–446. https://doi.org/10.1134/S0869591110040077.

19. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2009. Computer modeling of granite magma diapirism in the Earth’s crust. Doklady Earth Sciences 429 (8), 1380–1384. https://doi.org/10.1134/S1028334X09080315.

20. Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., 2014. Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izvestiya, Physics of the Solid Earth 50 (6), 839–852. https://doi.org/10.1134/S1069351314060056.

21. Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russian Geology and Geophysics 57 (6), 843–857. https://doi.org/10.1016/j.rgg.2016.05.002.

22. Polyansky O.P., Semenov A.N., Vladimirov V.G., Karmysheva I.V., Vladimirov A.G., Yakovlev V.A., 2017. Numerical simulation of magma mingling (case of Bayankol gabbro-granite series, Sangilen, Tuva). Geodynamics & Tectonophysics 8 (2), 385–403 (in Russian). https://doi.org/10.5800/GT-2017-8-2-0247.

23. Reference Geological and Geophysical Profiles of Russia (Atlas), 2013. Deep seismic sections of GSS profiles constructed in the period from 1972 to 1995. Electronic edition. Rosnedra, VSEGEI, St. Petersburg (in Russian). Available from: https://vsegei.ru/ru/info/seismic/ (last accessed March 25, 2019).

24. Rosenberg C.L., Handy M.R., 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23 (1), 19–28. https://doi.org/10.1111/j.1525-1314.2005.00555.x.

25. Sawyer E.W., 2001. Melt segregation in the continental crust: Distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology 19 (3), 291–309. https://doi.org/10.1046/j.0263-4929.2000.00312.x.

26. Semenov A.N., Polyansky O.P., 2017. Numerical modeling of the mechanisms of magma mingling and mixing: A case study of the formation of complex intrusions. Russian Geology and Geophysics 58 (11), 1317–1332. https://doi.org/10.1016/j.rgg.2017.11.001.

27. Schmeling H., Marquart G., Weinberg R., Wallner H., 2019. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophysical Journal International, 217 (1), 422–450. https://doi.org/10.1093/gji/ggz029.

28. Shelepaev R.A., 2006. Evolution of Basic Magmatism, Western Sangilen (South-Eastern Tuva). Author’s brief thesis (Candidate of Geology and Mineralogy). Novosibirsk, 16 p. (in Russian)

29. Shelepaev R.A., Egorova V.V., Izokh A.E., Seltmann R., 2018. Collisional mafic magmatism of the fold-thrust belts framing southern Siberia (Western Sangilen, southeastern Tuva). Russian Geology and Geophysics 59 (5), 525–540. https://doi.org/10.1016/j.rgg.2018.04.006.

30. Sokol E.V., Polyansky O.P., Semenov A.N., Reverdatto V.V., Kokh S.N., Devyatiyarova A.S., Kolobov V.Yu., Khvorov P.V., Babichev A.V., 2019. High-grade contact metamorphism in the Kochumdek River valley (Podkamennaya Tunguska basin, East Siberia): Evidence for Magma Flow. Russian Geology and Geophysics 60 (4), 386–399. https://doi.org/10.15372/RGG2019088.

31. Tirone M., 2018. Petrological geodynamics of mantle melting II. AlphaMELTS+ multiphase flow: dynamic fractional melting. Frontiers in Earth Science 6, Article 18. https://doi.org/10.3389/feart.2018.00018.

32. Vasilevsky A.N., Boldyrev M.A., Mikheev V.V., Dergachev A.A., Krasavin V.V., Kirin Yu.M., Fomin Yu.N., Filina A.G., Blagovidova T.Ya., Kuchai O.A., 1985. Scientific and Technical Report of the Altai-Sayan Experimental-Methodical Seismological Expedition. Publishing House of the Institute of Geology and Geophysics, Siberian Branch of the USSR Acad. Sci., Novosibirsk, 243 p. (in Russian)

33. Vigneresse J.L., Barbey P., Cuney M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37 (6), 1579–1600. https://doi.org/10.1093/petrology/37.6.1579.

34. Vladimirov A.G., Karmysheva I.V., Yakovlev V.A., Travin A.V., Tsygankov A.A., Burmakina G.N., 2017. Thermochronology of mingling dykes in west Sangilen (south-east Tuva, Russia): evidence of the collapse of the collisional system in the north-western edge of the Tuva-Mongolia massif. Geodynamics & Tectonophysics 8 (2), 283–310 (in Russian) https://doi.org/10.5800/GT-2017-8-2-0242.

35. Yegorova T.P., Pavlenkova G.A., 2015. Velocity-density models of the Earth’s crust and upper mantle from the Quartz, Craton, and Kimberlite superlong seismic profiles. Izvestiya, Physics of the Solid Earth 51 (2), 250–267. https://doi.org/10.1134/S1069351315010048.

36. Zorin Y.A., 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951(99)00042-6.


Review

For citations:


Polyansky O.P., Kargopolov S.A., Izokh A.E., Semenov A.N., Babichev A.V., Vasilevsky A.N. THE ROLE OF MAGMATIC HEAT SOURCES IN THE FORMATION OF REGIONAL AND CONTACT METAMORPHIC AREAS IN WEST SANGILEN (TUVA, RUSSIA). Geodynamics & Tectonophysics. 2019;10(2):309-323. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0416

Views: 920


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)