ZIRCON IN HIGH‐MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS): MORPHOLOGY, GEOCHEMICAL SIGNATURE, AND PETROGENESIS IMPLICATIONS
https://doi.org/10.5800/GT-2019-10-2-0415
Abstract
The article is focused on the morphology, trace element composition, U‐Pb and Lu‐Hf systems in zircon in high‐Mg diorite of the Chelyabinsk granitoid massif. Our analytical studies of the U‐Pb and Lu‐Hf isotope systems and the trace element composition were performed using mass spectrometry (MS) with inductively coupled plasma (ICP) and laser ablation (LA) of samples. It is established that the zircon formed at the last stages of crystallization of the basic melt under subsolidus conditions at low (600–700 °C) temperatures, which distinguishes it from the zircon of most other high‐Mg rocks of the intermediate composition. The internal structure of the zircon and the concentration of trace elements are locally altered under the influence of a fluid, which led to a partial disruption of the U‐Pb and Lu‐Hf isotopic systems. For the least altered areas in the zircon crystals, the age of crystallization of the parent high‐Mg melt is 362±2 Ma, which coincides with the age estimated from the geological data. Considering the isotope composition of Hf in the zircon and the trace element concentrations, there are grounds to relate the formation of high‐Mg diorite in the Chelyabinsk granitoid massif with a mixed mantle‐crustal source.
About the Authors
T. A. OsipovaRussian Federation
Tatiana A. Osipova - Candidate of Geology and Mineralogy, Secretary for Scientific Affairs
15 Akademik Vonsovsky street, Yekaterinburg 620016
G. A. Kallistov
Russian Federation
Gennady А. Kallistov - Candidate of Geology and Mineralogy, Researcher
15 Akademik Vonsovsky street, Yekaterinburg 620016
M. V. Zaitseva
Russian Federation
Maria V. Zaitseva - Junior Researcher
15 Akademik Vonsovsky street, Yekaterinburg 620016
References
1. Andersen T., 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192 (1–2), 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x.
2. Belousova E.A., Griffin W.L., O’Reilly S.Y., 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. Journal of Petrology 47 (2), 329–353. https://doi.org/10.1093/petrology/egi077.
3. Berezhnaya N.G., Levsky L.K., 2015. Local methods and anomalies of the uranium-lead system in zircons. In: Isotope dating of geological processes: new results, approaches and prospects. Proceedings of the VI Russian Conference on Isotope Geochronology (St. Petersburg, June 2–5, 2015). Sprinter, Saint Petersburg, p. 37–39 (in Russian)
4. Blichert-Toft J., Albarède F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148 (1), 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x.
5. Burmakina G.N., Tsygankov A.A., 2013. Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, western Transbaikalia: composition and petrogenesis. Petrology 21 (3), 280–303. https://doi.org/ 10.1134/S086959111303003X.
6. Castillo R.C., 2012. Adakite petrogenesis. Lithos 134–135, 304–316. https://doi.org/10.1016/j.lithos.2011.09.013.
7. Chauvel C., Blichert-Toft J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190 (3–4), 137–151. https://doi.org/10.1016/S0012-821X(01)00379-X.
8. Claiborne L.L., Miller C.F., Walker B.A., Wooden J.L., Mazdab F.K., Bea F., 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine 70 (5), 517–543. https://doi.org/10.1180/0026461067050348.
9. Dementieva G.I., 1964. Induction Faces on Crystals. Author’s brief thesis (Candidate of Geology and Mineralogy). Leningrad State University, Leningrad, 24 p. (in Russian)
10. Dong G., Luo M., Mo X., Zhao Z., Dong L., Yu X., Wang X., Li X., Huang X., Liu Y., 2018. Petrogenesis and tectonic implications of Early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geoscience Frontiers 9 (5). 1383–1397. https://doi.org/10.1016/j.gsf.2018.03.003.
11. Du L., Long X., Yuan C., Zhang Y., Huang Z., Sun M., Xiao W., 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos 318–319, 47–59. https://doi.org/10.1016/j.lithos.2018.08.006.
12. Fershtater G.B., Bea F., Montero M.P., Scarrow J., 2004. Hornblende gabbro in the Urals: types, geochemistry, and petrogenesis. Geochemistry International 42 (7), 610–629.
13. Gagnevin D., Daly J.S., Kronz A., 2010. Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy and Petrology 159 (4), 579–596. https://doi.org/10.1007/s00410-009-0443-0.
14. Geisler T., Pidgeon R.T., Kurtz R., Van Bronswijk W., Schleicher H., 2003. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist 88 (10), 1496–1513. https://doi.org/10.2138/am-2003-1013.
15. Giovanardi T., Lugli F., 2017. The Hf-INATOR: A free data reduction spreadsheet for Lu/Hf isotope analysis. Earth Science Informatics 10 (4), 517–523. https://doi.org/10.1007/s12145-017-0303-9.
16. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/g23603a.1.
17. Hanchar J.M., Watson E.B., 2003. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry 53 (1), 89–112. https://doi.org/10.2113/0530089.
18. Hoskin P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69 (3), 637–648. https://doi.org/10.1016/j.gca.2004.07.006.
19. Kallistov G.A., 2014. The duration and age stages of the formation of the Chelyabinsk granitoid batholith. In: Yearbook2013. Proceedings of the IGG, UB RAS. Issue 161. Yekaterinburg, p. 343–349 (in Russian)
20. Kallistov G.А., Osipova Т.А., 2017. Geology and geochemistry of synplutonic dykes in the Chelyabinsk granitoid massif, South Urals. Geodynamics & Tectonophysics 8 (2), 331–345 (in Russian) https://doi.org/10.5800/GT-2017-8-2-0244.
21. Kallistov G.А., Osipova Т.А., 2018. Chromite as an indicator of the conditions of the crust-mantle interaction during the formation of high-magnesian melanodiorites of the Chelyabinsk massif (Southern Urals). In: Altaid and Uralide correlation: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogenic forecasting. Proceedings of the Fourth International Scientific Conference (Novosibirsk, 2–6 April 2018). Publishing House of the Siberian Branch of RAS, Novosibirsk, p. 67–68 (in Russian)
22. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021.
23. Kostitsyn Y.A., Belousova E.A., Silant’ev S.A., Bortnikov N.S., Anosova M.O., 2015. Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochemistry International 53 (9), 759–785. https://doi.org/10.1134/S0016702915090025.
24. Lenting C., Geisler T., Gerdes A., Kooijman E., Scherer E.E., Zeh A., 2010. The behavior of the Hf isotope system in radiationdamaged zircon during experimental hydrothermal alteration. American Mineralogist 95 (8–9), 1343–1348. https://doi.org/10.2138/am.2010.3521.
25. Litvinovsky B.A., Zanvilevich A.N., Kalmanovich M.A., Shadaev M.G., 1992. Synplutonic basic intrusions during the early evolution of the Angara–Vitim batholith (Baikal Region). Geologiya i Geofizika (Russian Geology and Geophysics) 33 (7), 70–81 (in Russian)
26. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An overview of adakite, tonalite–trondhjemite– granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.
27. Pitcher W.S., 1991. Synplutonic dykes and mafic enclaves. In: J. Didier, B. Barbarin (Eds.), Enclaves and granite petrology. Development in Petrology, vol. 13. Amsterdam, Elsevier, p. 389–391.
28. Popov V.A., 2011. Practical Genetic Mineralogy. Ural Branch of RAS, Yekaterinburg, 167 p. (in Russian) [Попов В.А. Практическая генетическая минералогия. Екатеринбург: УрО РАН, 2011. 167 с.].
29. Pribavkin S.V., Kallistov G.A., Osipova T.A., Gottman I.A., Zinkova E.A., 2019. Chromium distribution in the minerals of high-Mg rocks associated with granitoid massifs of the Urals. Lithosphere 19 (3) (in press) (in Russian)
30. Puchkov V.N., 2010. Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny). DesignPoligraphService, Ufa, 280 p. (in Russian)
31. Pupin J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73 (3), 207–220. https:// doi.org/10.1007/BF00381441.
32. Qian Q., Hermann J., 2010. Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. Journal of Petrology 51 (7), 1381–1416. https://doi.org/10.1093/petrology/egq023.
33. Savko К.А., Terentiev R.A., 2017. The geochronology of quartz diorites from Romanovsky pluton of Voronezh crystalline massif. Proceedings of Voronezh State University. Series: Geology (2), 74–80 (in Russian).
34. Scherer E., Münker C., Mezger K., 2001. Calibration of the lutetium-hafnium clock. Science 293 (5530), 683–687. https://doi.org/10.1126/science.1061372.
35. Sklyarov E.V., Fedorovskii V.S., 2006. Magma mingling: tectonic and geodynamic implications. Geotectonics 40 (2). 120–134. https://doi.org/10.1134/S001685210602004X.
36. Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
37. Tatsumi Y., 2008. Making continental crust: the sanukitoid connection. Chinese Science Bulletin 53 (11), 1620–1633. https://doi.org/10.1007/s11434-008-0185-9.
38. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 312 p.
39. Thomas J.B., Bodnar R.J., Shimizu N., Sinha A.K., 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta 66 (16), 2887–2901. https:// doi.org/10.1016/S0016-7037(02)00881-5.
40. Vervoort J.D., Blichert-Toft J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63 (3–4), 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9.
41. Vervoort J.D., Kemp A.I., 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology 425, 65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023.
42. Vladimirov V.G., 2019. The origin and formation mechanisms of magmatic mingling structures in combined gabbrogranite dykes. In: Petrology of magmatic and metamorphic complexes. Proceedings of the IX All-Russian Petrographic Conference with international participation. Issue 9. Publishing House of Tomsk TsNTI, Tomsk, p. 67–69 (in Russian)
43. Wark D.A., Miller C.F., 1993. Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, USA. Chemical Geology 110 (1–3), 49–67. https://doi.org/10.1016/0009-2541(93)90247-G.
44. Watson E.B., Liang Y., 1995. A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist 80 (11–12), 1179–1187. https://doi.org/10.2138/am-1995-11-1209.
45. Watson E.B., Wark D.A., Thomas J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151 (4), 413–433. https://doi.org/10.1007/s00410-006-0068-5.
46. Wood B.J., Turner S.P., 2009. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth and Planetary Science Letters 283 (1–4), 59–66. https://doi.org/10.1016/j.epsl.2009.03.032.
47. Zaitceva M.V., Pupyshev A.A., Shchapova J.V., Votyakov S.L., 2016. Dating of zircons using NexION 300S quadrupole mass spectrometer with inductively coupled plasma and NWR 213 attachment for laser ablation. Analitika i Kontrol’ (Analytics and Control) 20 (4), 294–306 (in Russian) https://doi.org/10.15826/analitika.2016.20.4.006.
48. Zaitseva M.V., Votyakov S.L., 2017. To the method of determining the U-Pb age and analysis of the Lu-Hf isotope system of zircon by the method of LA-ICP-MS. In: Yearbook-2016. Proceedings of the IGG, UB RAS. Issue 164. Yekaterinburg, p. 284–289 (in Russian).
49. Zhang J., Zhang H., Li L., 2018. Neoproterozoic tectonic transition in the South Qinling Belt: New constraints from geochemistry and zircon U–Pb–Hf isotopes of diorites from the Douling Complex. Precambrian Research 306, 112–128. https://doi.org/10.1016/j.precamres.2017.12.043.
Review
For citations:
Osipova T.A., Kallistov G.A., Zaitseva M.V. ZIRCON IN HIGH‐MG DIORITE OF THE CHELYABINSK MASSIF (SOUTH URALS): MORPHOLOGY, GEOCHEMICAL SIGNATURE, AND PETROGENESIS IMPLICATIONS. Geodynamics & Tectonophysics. 2019;10(2):289-308. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0415