Preview

Geodynamics & Tectonophysics

Advanced search

MANTLE TERRANES OF THE SIBERIAN CRATON: THEIR INTERACTION WITH PLUME MELTS BASED ON THERMOBAROMETRY AND GEOCHEMISTRY OF MANTLE XENOCRYSTS

https://doi.org/10.5800/GT-2019-10-2-0412

Abstract

We have studied variations in the structure and composition of minerals from the pipes of the Yakutian kimberlite province (YKP) in different mantle terranes of the Siberian craton. The study was based on an extensive database, including the microprobe analysis datasets consolidated by IGM, IG, IEC and IGDNM SB RAS and ALROSA and geochemical analysis of minerals performed by LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The reconstruction shows layering under the tubes, including 6–7 slab that were probably formed due to subduction; the slabs are separated by pyroxenitic, eclogitic and metasomatic layers and dunite lenses. Transects and mantle profiles across kimberlite fields are constructed. Within the limits of the revealed tectonic terranes, we assume a collage of microplates formed in the early – middle Archean. Extended submeridional structures of the tectonic terranes are not always confirmed at the mantle level. Beneath the Anabar and Aldan shields, the mantle sections show more coarse layers and 3–4 large horizons of dunites with garnet and pyroxene nests separated by ilmenite‐ phlogopite metasomatites and pyroxenites. Terranes representing the suture zones between the protocratons (e.g. Khapchan) are often saturated with eclogites and pyroxenites that may occur as leghthy ascending bodies of magmatic eclogites penetrating through the mantle lithosphere structure (ML). A nearly ubiquitous pyroxenite layer at the level of 3.5–4.5 GPa formed probably in the early Archean with a high heat flux during melting of eclogites and was subsequently traced by plume melts. Within the early Archean protocratons – granite‐greenstone terranes (Tungus, Markha, Berekta, and Sharyzhalgai, ~3.8–3.0 Gyr [Gladkochub et al., 2019], the mantle lithosphere is less depleted and largely metasomatized. The ML structure of the Daldyn and Magan granulite‐orthogneiss terranes is layered with folding revealed in the north‐to‐south sections from the Udachnaya pipe to the Krasnopresnenskaya pipe, which is less pronounced in the latitudinal direction. From the Daldyn field to the Alakit field, there is an increase in the degree of metasomatism, and higher alkalinity of pyroxenes and larger amounts of phlogopite are noted. The most productive Aikhal and Yubileinaya pipes are confined to a dunite core, which is accompanied by a change in the specialization of high‐charge elements Ta‐Nb to Zr‐Hf. Within the limits of the Magan terrane, the thin‐layer structure of the middle and upper parts of the craton keel is replaced with a sharply depleted productive horizon at its base. The mantle of the granite‐greenstone Markha terrrein comprises eclogite (often pelitic) horizons, which suggests subduction of the continental lithosphere or sediments. In the central and northern parts of the Siberian craton, most structures in the mantle are sinking to the west at small angles. The geochemistry features of garnets and pyroxenes from various mantle terranes are considered in detail.

About the Authors

I. V. Ashchepkov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation

Igor V. Ashchepkov - Candidate of Geology and Mineralogy, Senior Researcher

3 Academician Koptyug ave., Novosibirsk 630090



A. S. Ivanov
Geological Enterprise of Exploration, Public Joint Stock Company «ALROSA»
Russian Federation

Aleksandr S. Ivanov - Lead Researcher

16 Chernychevskoe highway, Mirny 678174



S. I. Kostrovitsky
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS; Institute of the Earth's Crust, Siberian Branch of RAS
Russian Federation

Sergei I. Kostrovitsky - Doctor of Geology and Mineralogy, Lead Researcher

1A Favorsky street, Irkutsk 664033, 

128 Lermontov street, Irkutsk 664033



M. A. Vavilov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation

Mikhail A. Vavilov - Lead Engineer

3 Academician Koptyug ave., Novosibirsk 630090



S. A. Babushkina
Institute of Diamond and Precious Metals Geology, Siberian Branch of RAS; M.K. Ammosov North‐Eastern Federal University
Russian Federation

Svetlana A. Babushkina - Candidate of Geology and Mineralogy, Senior Researcher

39 Lenin avenue, Yakutsk 677007, Sakha (Yakutia) Republic, 

58 Belinsky street, Yakutsk 677000, Sakha (Yakutia) Republic



N. V. Vladykin
A.P. Vinogradov Institute of Geochemistry, Siberian Branch of RAS
Russian Federation

Nikolai V. Vladykin - Doctor of Geology and Mineralogy

1A Favorsky street, Irkutsk 664033

 



N. S. Tychkov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation

Nikolai S. Tychkov - Candidate of Geology and Mineralogy, Senior Researcher, Head of Laboratory

3 Academician Koptyug ave., Novosibirsk 630090



N. S. Medvedev
A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of RAS
Russian Federation

Nikolai S. Medvedev Candidate of Chemistry

3 Academician Lavrentiev ave., Novosibirsk 630090



References

1. Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O’Brien H., Palessky S.V., 2013. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. Journal of Asian Earth Sciences 70–71, 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002.

2. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S., 2013. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215. https://doi.org/10.1016/j.lithos.2012.11.014.

3. Agashev A.M., Pokhilenko N.P., Tolstov A.V., Polyanichko V.G., Mal’kovets V.G., Sobolev N.V., 2004. New age data on kimberlites from the Yakutian diamondiferous province. Doklady Earth Sciences 399 (8), 1142–1145.

4. Agee C.B., 1998. Crystal-liquid density inversions in terrestrial and lunar magmas. Physics of the Earth and Planetary Interiors 107 (1–3), 63–74 https://doi.org/10.1016/S0031-9201(97)00124-6.

5. Artemieva I.M., Thybo H., Cherepanova Y., 2019. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters 505, 13–19. https://doi.org/10.1016/j.epsl.2018.09.034.

6. Ashchepkov I.V., 2011. Program of mantle thermometers and barometers, and the use: reconstruction and calibration of PT methods. Vestnik ONZ RAN 3, NZ6008 (in Russian) https://doi.org/10.2205/2011NZ000138.

7. Ashchepkov I.V., Alymova N.V., Logvinova A.M., Vladykin N.V., Kuligin S.S., Mityukhin S.I., Downes H., Stegnitsky Y.B., Prokopiev S.A., Salikhov R.F., Palessky S.V., Khmelnikova O.S., 2014. Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 5 (2), 915–938. https://doi.org/10.5194/se-5-915-2014.

8. Ashchepkov I.V., Kuligin S.S., Vladykin N.V., Downes H., Vavilov M.A., Nigmatulina E.N., Babushkina S.A., Tychkov N.S., Khmelnikova O.S., 2016. Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geoscience Frontiers 7 (4), 639–662. https://doi.org/10.1016/j.gsf.2015.06.004.

9. Ashchepkov I.V., Logvinova A.M., Ntaflos T., Vladykin N.V., Kostrovitsky S.I., Spetsius Z., Mityukhin S.I., Prokopyev S.A., Medvedev N.S., Downes H., 2017b. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle subterranes beneath central Yakutia? Geoscience Frontiers 8 (4), 671–692. https://doi.org/10.1016/j.gsf.2016.08.004.

10. Ashchepkov I.V., Logvinova A.M., Reimers L.F., Ntaflos T., Spetsius Z.V., Vladykin N.V., Downes H., Yudin D.S., Travin A.V., Makovchuk I.V., Palesskiy V.S., Khmel'nikova O.S., 2015. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geoscience Frontiers 6 (5), 687–714. https://doi.org/10.1016/j.gsf.2014.08.005.

11. Ashchepkov I.V., Ntaflos T., Kuligin S.S., Malygina E.V., Agashev A.M., Logvinova A.M., Mityukhin S.I., Alymova N.V., Vladykin N.V., Palessky S.V., Khmelnikova O.S., 2013b. Deep-seated xenoliths from the Brown Breccia of the Udachnaya Pipe, Siberia. In: D. Graham Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V. Chalapathi Rao, S. Sparks (Eds.), Proceedings of 10th International Kimberlite Conference. Vol. 1 (Special Issue of the Journal of the Geological Society of India), Springer, New Delhi, p. 59–73. https://doi.org/10.1007/978-81-322-1170-9_5.

12. Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Downes H., Vladykin N.V., 2017а. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geoscience Frontiers 8 (4), 775–795 https://doi.org/10.1016/j.gsf.2016.06.012.

13. Ashchepkov I.V., Ntaflos T., Spetsius Z.V., Salikhov R.F., Downes H., 2017c. Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geoscience Frontiers 8 (4), 693–710. https://doi.org/10.1016/j.gsf.2016.05.008.

14. Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina E.V., Alymova N.A., Kostrovitsky S.I., Rotman A.Y., Mityukhin S.I., Karpenko M.A., Stegnitsky Y.B., Khemelnikova O.S., 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485 (1–4), 17–41. https://doi.org/10.1016/j.tecto.2009.11.013.

15. Ashchepkov I.V., Vladykin N.N., Ntaflos T., Kostrovitsky S.I., Prokopiev S.A., Downes H., Smelov A.P., Agashev A.M., Logvinova A.M., Kuligin S.S., Tychkov N.S., Salikhov R.F., Stegnitsky Yu.B., Alymova N.V., Vavilov M.A., Minin V.A., Babushkina S.A., Ovchinnikov Yu.I., Karpenko M.A., Tolstov A.V., Shmarov G.P., 2014a. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634 (1–4), 55–75. https://doi.org/10.1016/j.tecto.2014.07.017.

16. Ashchepkov I.V., Vladykin N.V., Nikolaeva I.V., Palessky S.V., Logvinova A.M., Saprykin A.I., Khmel’nikova O.S., Anoshin G.N., 2004. Mineralogy and geochemistry of mantle inclusions and mantle column structure of the Yubileinaya kimberlite pipe, Alakit field, Yakutia. Doklady Earth Sciences 395 (3), 378–384.

17. Ashchepkov I.V., Vladykin N.V., Ntaflos T., Downes H., Mitchell R., Smelov A.P., Alymova N.V., Kostrovitsky S.I., Rotman A.Ya, Smarov G.P., Makovchuk I.V., Stegnitsky Yu.B., Nigmatulina E.N., Khmelnikova O.S., 2013a. Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Research 23 (1), 4–24. https://doi.org/10.1016/j.gr.2012.03.009.

18. Ashchepkov I.V., Vladykin N.V., Saprykin A.I., Khmelnikova O.S., Anoshin G.N., 2001. Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Revista Brasileira de Geociências 31 (4), 493–496.

19. Aulbach S., Griffin W.L., Pearson N.J., O'Reilly S.Y., Kivi K., Doyle B.J., 2004. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208 (1–4), 61–88. https://doi.org/10.1016/j.chemgeo.2004.04.006.

20. Babushkina S.A., 2013. Typomorphism of garnets from the Zapretnaya pipe. Razvedka i Okhrana Nedr (Exploration and Protection of Mineral Resources) (12), 13–16 (in Russian)

21. Bascou J., Doucet L.S., Saumet S., Ionov D.A., Ashchepkov I.V., Golovin A.V., 2011. Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters 304 (1–2), 71–84. https://doi.org/10.1016/j.epsl.2011.01.016.

22. Batumike J.M., Griffin W.L., O'Reilly S.Y., 2009. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112 (Supplement 1), 166–176. https://doi.org/10.1016/j.lithos.2009.04.020.

23. Beard B.L., Fraracci K.N., Taylor L.A., Snyder G.A., Clayton R.N., Mayeda T.K., Sobolev N.V., 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125 (4), 293–310. https://doi.org/10.1007/s004100050223.

24. Boyd F.R., 1973. A pyroxene geotherm. Geochimica et Cosmochimica Acta 37 (12), 2533–2546. https://doi.org/10.1016/0016-7037(73)90263-9.

25. Boyd F.R., Nixon P.H., 1978. Ultramafic nodules from the Kimberley pipes, South Africa. Geochimica et Cosmochimica Acta 42 (9), 1367–1382. https://doi.org/10.1016/0016-7037(78)90042-X.

26. Boyd F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128 (2–3), 228–246. https://doi.org/10.1007/s004100050305.

27. Brey G.P., Köhler T., 1990. Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.

28. Bushenkova N., Tychkov S., Koulakov I., 2002. Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia. Tectonophysics 358 (1–4), 57–76. https://doi.org/10.1016/S0040-1951(02)00417-1.

29. Condie K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146 (1–2), 319–332. https://doi.org/10.1016/j.pepi.2003.04.002.

30. Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer-Verlag, Berlin, New York, 208 p.

31. Deschamps F., Godard M., Guillot S., Hattori K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019.

32. Egorov K.N., Kiselev A.I., Men’shagin Y.V., Minaeva Y.A., 2010. Lamproite and kimberlite of the Sayany area: Composition, sources, and diamond potential. Doklady Earth Sciences 435 (2), 1670–1675. https://doi.org/10.1134/S1028334X10120251.

33. Egorov K.N., Solov’eva L.V., Kovach V.P., Men’shagin Yu.V., Maslovskaya M.N., Sekerin A.P., Bankovskaya E.V., 2006. Petrological features of olivine-phlogopite lamproites of the Sayan region: Evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochemistry International 44 (7), 729–735. https://doi.org/10.1134/S0016702906070093.

34. Ernst W.G., 2017. Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences 145 (Part B), 334–348 https://doi.org/10.1016/j.jseaes.2017.05.037.

35. Evensen N.M., Hamilton P.J., O'Nions R.K., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42 (8), 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X.

36. Foley S.F., Pintér Z., 2018. Chapter 1 – Primary melt compositions in the Earth's mantle. In: Y. Kono, C. Sanloup (Eds.), Magmas Under Pressure. Advances in High-Pressure Experiments on Structure and Properties of Melts. Elsevier, Amsterdam, p. 3–42. https://doi.org/10.1016/B978-0-12-811301-1.00001-0.

37. Foley S.F., Yaxley G.M., Rosenthal A., Buhre S., Kiseeva E.S., Rapp R.P., Jacob D.E., 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112 (Supplement 1), 274–283. https://doi.org/10.1016/j.lithos.2009.03.020.

38. Garanin V.K., Zvezdin A.B., Okrugin G.V., 1998. Mineralogy of oxide minerals from kimberlites of the Morkok pipe in connection with the assessment of its diamond content (Yakutsk diamondiferous province). Bulletin of the Moscow University. Series 4: Geology (4), 39–46 (in Russian)

39. Gaul O.F., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2000. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters 182 (3–4), 223–235. https://doi.org/10.1016/S0012-821X(00)00243-0.

40. Gerya T., 2014. Precambrian geodynamics: Concepts and models. Gondwana Research 25 (2), 442–463. https:// doi.org/10.1016/j.gr.2012.11.008.

41. Gladkochub D.P., DonskayaT.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https://doi.org/10.1016/j.gr.2018.07.007.

42. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Natapov L.M., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., 2006. Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169–174.

43. Gornova M.A., Belyaev V.A., Belozerova O.Yu., 2013. Textures and geochemistry of the Saramta peridotites (Siberian craton): Melting and refertilization during early evolution of the continental lithospheric mantle. Journal of Asian Earth Sciences 62, 4–17. https://doi.org/10.1016/j.jseaes.2012.10.004.

44. Grakhanov A.S., Zarukin R.A., Bogush I.N., Yadrenkin A.B., 2009. Discovery of Upper Triassic diamond placers in the Olenek Bay of the Laptev Sea. Otechestvennaya Geologia (Russian Geology) (1), 53–61 (in Russian)

45. Grégoire M., Bell D., Le Roex A., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology 142 (5), 603–625. https://doi.org/10.1007/s00410-001-0315-8.

46. Grégoire M., Bell D.R., Le Roex A.P., 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. Journal of Petrology 44 (4), 629–657. https://doi.org/10.1093/petrology/44.4.629.

47. Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y., 1999а. Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology 40 (5), 679–704. https://doi.org/10.1093/petroj/40.5.679.

48. Griffin W.L., Natapov L.M., O'Reilly S.Y., van Achterbergh E., Cherenkova A.F., Cherenkov V.G., 2005. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81 (1–4), 167–187. https://doi.org/10.1016/j.lithos.2004.10.001.

49. Griffin W.L., O’Reilly S.Y., 2007. Cratonic lithospheric mantle: is anything subducted? Episodes 30 (1), 43–53.

50. Griffin W.L., O’Reilly S.Y., Abe N., Aulbach S., Davies R.M., Pearson N.J., Doyle B.J., Kivi K., 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research 127 (1–3), 19–41. https://doi.org/10.1016/S0301-9268(03)00180-3.

51. Griffin W.L., O’Reilly S.Y., Afonso J.C., Begg G.C., 2009. The composition and evolution of lithospheric mantle: a reevaluation and its tectonic implications. Journal of Petrology 50 (7), 1185–1204. https://doi.org/10.1093/petrology/egn033.

52. Griffin W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999c. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.

53. Griffin W.L., Shee S.R., Ryan C.G., Win T.T., Wyatt B.A., 1999b. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology 134 (2–3), 232–250. https://doi.org/10.1007/s004100050481.

54. Gudmundsson G., Wood B.J., 1995. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology 119 (1), 56–67. https://doi.org/10.1007/BF00310717.

55. Helmstaedt H., 2009. Crust–mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112 (Supplement 2), 1055–1068. https://doi.org/10.1016/j.epsl.2011.04.034.

56. Herzberg C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45 (12), 2507–2530. https://doi.org/10.1093/petrology/egh039.

57. Ionov D.A., Doucet L.S., Ashchepkov I.V., 2010. Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East Kimberlite. Journal of Petrology 51 (11), 2177–2210. https://doi.org/10.1093/petrology/egq053.

58. Ionov D.A., Doucet L.S., Carlson R.W., Golovin A.V., Korsakov A.V., 2015. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochimica et Cosmochimica Acta 165, 466–483. https://doi.org/10.1016/j.gca.2015.06.035.

59. Ionov D.A., Doucet L.S., Xu Y., Golovin A.V., Oleinikov O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica et Cosmochimica Acta 224, 132–153. https://doi.org/10.1016/j.gca.2017.12.028.

60. Jagoutz E., Lowry D., Mattey D., Kudrjavtseva G., 1994. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochimica et Cosmochimica Acta 58 (23), 5191–5207. https://doi.org/10.1016/0016-7037(94)90304-2.

61. Karato S.I., 2010. Rheology of the Earth's mantle: A historical review. Gondwana Research 18 (1), 17–45. https:// doi.org/10.1016/j.gr.2010.03.004.

62. Kopylova M.G., Caro G., 2004. Mantle xenoliths from the Southeastern Slave craton: Evidence for chemical zonation in a thick, cold lithosphere. Journal of Petrology 45 (5), 1045–1067. https://doi.org/10.1093/petrology/egh003.

63. Koreshkova M.Yu., Downes H., Nikitina L.P., Vladykin N.V., Larionov A.N., Sergeev S.A., 2009. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Research 168 (3–4), 197–212. https://doi.org/10.1016/j.precamres.2008.09.007.

64. Kornilova V.P., Spetsius Z.V., Pomazanskiy B.S., 2016. Petrographic-mineralogical peculiarities and feasibility of kimberlite pipes Loric and Svetlana grade re-estimation (West-Ukukitsky field, Yakutia). Regional Geology and Metallogeny (68), 92–99 (in Russian)

65. Kostrovitsky S.I., Alymova N.V., Yakovlev D.A., Serov I.V., Ivanov A.S., Serov V.P., 2006. Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian province. Doklady Earth Sciences 406 (1), 19–23. https://doi.org/10.1134/S1028334X06010065.

66. Kostrovitsky S.I., Morikiyo T., Serov I.V., Yakovlev D.A., Amirzhanov A.A., 2007. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geology and Geophysics 48 (3), 272–290. https:// doi.org/10.1016/j.rgg.2007.02.011.

67. Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on fieldal tomographic inversion of P and PP travel times. Tectonophysics 486 (1–4), 81–100. https://doi.org/10.1016/j.tecto.2010.02.011.

68. Krogh E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology 99 (1), 44–48. https://doi.org/10.1007/BF00399364.

69. Kuligin S.S., 1997. A Complex of Pyroxenite Xenoliths from Different Regions of the Siberian Platform. PhD Thesis (Candidate of Geology and Mineralogy). UIGGM SB RAS, Novosibirsk, 190 p. (in Russian)

70. Kuskov O.L., Kronrod V.A., Prokof’ev A.A., 2011. Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles. Izvestiya, Physics of the Solid Earth 47 (3), 155–175. https://doi.org/10.1134/S1069351310111011.

71. Kuskov O.L., Kronrod V.A., Prokof’ev A.A., Pavlenkova N.I., 2014a. Lithospheric mantle structure of the Siberian craton inferred from the superlong Meteorite and Rift seismic profiles. Russian Geology and Geophysics 55 (7), 892–906. https://doi.org/10.1016/j.rgg.2014.06.008.

72. Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I., 2014b. Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616, 154–166. https://doi.org/10.1016/j.tecto.2014.01.006.

73. Lavrentiev Yu.G., Usova L.V., 1994. The new version of the Karat software for quantitative X-ray microanalysis. Journal of Analytical Chemistry 46 (5), 462–468 (in Russian)

74. Lavrentiev Yu.G., Usova L.V., Kuznetsova A.I., Letov S.V., 1987. X–ray quantum-micrometric analysis of the most important kimberlite minerals. Geologiya i Geofizika (Russian Geology and Geophysics) 28 (5), 75–81 (in Russian)

75. Laz’ko E.E., Roden M.F., 2003. Garnet peridotites and pyroxenites in the subcontinental lithosphere of the central part of the Siberian craton (xenoliths from the Mir pipe). In: Problems of forecasting, prospecting and study of mineral deposits on the threshold of the XXI century. Voronezh State University Publishing House, Voronezh, p. 307–318 (in Russian)

76. Lazarov M., Brey G.P., Weyer S., 2012. Evolution of the South African mantle – A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: Inter-mineral trace element and isotopic equilibrium. Lithos 154, 193–209. https://doi.org/10.1016/j.lithos.2012.07.013.

77. Lee C.T.A., Luffi P., Chin E.J., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59–90. https://doi.org/10.1146/annurev-earth-040610-133505.

78. Lehtonen M.L., O'Brien H.E., Peltonen P., Johanson B.S., Pakkanen L.K., 2004. Layered mantle at the Karelian Craton margin: P–T of mantle xenocrysts and xenoliths from the Kaavi–Kuopio kimberlites, Finland. Lithos 77 (1–4), 593–608. https://doi.org/10.1016/j.lithos.2004.04.026.

79. Liu J., Rudnick R.L., Walker R.J., Gao S., Wu F.-Y., Piccoli P.M., Yuan H., Xu W.-L., Xu Y.-G., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica et Cosmochimica Acta 75 (13), 3881–3902. https://doi.org/10.1016/j.lithos.2004.04.026.

80. Logvinova A.M., Taylor L.A., Floss C., Sobolev N.V., 2005. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. International Geology Review 47 (12), 1223–1233. https://doi.org/10.2747/00206814.47.12.1223.

81. Malkovets V.G., Griffin W.L., O'Reilly S.Y., Wood B.J., 2007. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35 (4), 339–342. https://doi.org/10.1130/G23092A.1.

82. Malygina E.V., 2000. Mineralogy of Xenoliths of Granular Peridotites from the Udachnaya Kimberlite Pipe in Connection to the Problem of the Upper Mantle Composition of the Siberian Platform. PhD Thesis (Candidate of Geology and Mineralogy). UGM SB RAS, Novosibirsk, 195 p. (in Russian)

83. Manikyamba C., Kerrich R., 2012. Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geoscience Frontiers 3 (3), 225–240. https://doi.org/10.1016/j.gsf.2011.11.009.

84. Manning C.E., 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223 (1–2), 1–16. https://doi.org/10.1016/j.epsl.2004.04.030.

85. McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chemical Geology 120 (3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.

86. McGregor I.D., 1974. The system MgO-SiO2–Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. American Mineralogist 59 (11), 110–119.

87. McKenzie D., Priestley K., 2008. The influence of lithospheric thickness variations on continental evolution. Lithos 102 (1–2), 1–11. https://doi.org/10.1016/j.lithos.2007.05.005.

88. Mei S., Bai W., Hiraga T., Kohlstedt D.L., 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201 (3–4), 491–507. https://doi.org/10.1016/S0012821X(02)00745-8.

89. Misra K.C., Anand M., Taylor L.A., Sobolev N.V., 2004. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contributions to Mineralogy and Petrology 146 (6), 696–714. https://doi.org/10.1016/j.lithos.2004.03.026.

90. Nickel K.G., Green D.H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters 73 (1), 158–170. https://doi.org/10.1016/0012-821X(85)90043-3.

91. Nicolas A., Dupuy C., 1984. Origin of ophiolitic and oceanic lherzolites. Tectonophysics 110 (3–4), 177–187. https:// doi.org/10.1016/0040-1951(84)90259-2.

92. Nimis P., Kuzmin D.V., Malkovets V., 2016. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist 101 (10), 2222–2232. https://doi.org/10.2138/am-2016-5540.

93. Nimis P., Taylor W.R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139 (5), 541–554. https://doi.org/10.1007/s004100000156.

94. Nimis P., Zanetti A., Dencker I., Sobolev N.V., 2009. Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112 (3–4), 397–412. https://doi.org/10.1016/j.lithos.2009.03.038.

95. Oleynikov O.B., 2000. Xenoliths of deep serpentinized alkaline ultrabasic rocks from the Yubileinaya kimberlite pipe. Otechestvennaya Geologia (Russian Geology) (5), 74–76 (in Russian)

96. O'Neill H.S.C., Pownceby M.I., Wall V.J., 1988. Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4). Geochimica et Cosmochimica Acta 52 (8), 2065–2072. https://doi.org/10.1016/0016-7037(88)90185-8.

97. O’Neill H.St.C., Wall V.J., 1987. The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology 28 (6), 1169–1191. https://doi.org/10.1093/petrology/28.6.1169.

98. O'Neill H.S.C., Wood B.J., 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70 (1), 59–70. https://doi.org/10.1007/BF00371872.

99. O'Reilly S.Y., Zhang M., Griffin W.L., Begg G., Hronsky J., 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 112 (Supplement 2), 1043–1054. https://doi.org/10.1016/j.lithos.2009.04.028.

100. Ovchinnikov Yu.I., 1990. Deep Xenoliths of the Obnazhennaya Kimberlite Pipe and Basalts of the Minusinsk Depression: PhD Thesis (Candidate of Geology and Mineralogy). UIGGM SB RAS, Novosibirsk, 225 p. (in Russian)

101. Parkinson I.J., Pearce J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology 39 (9), 1577–1618. https://doi.org/10.1093/petroj/39.9.1577.

102. Pavlenkova N.I., 2011. Seismic structure of the upper mantle along the long-range PNE profiles – rheological implication. Tectonophysics 508 (1–4), 85–95. https://doi.org/10.1016/j.tecto.2010.11.007.

103. Pearson D.G., 1999. The age of continental roots. In: R.D. van der Hilst, W.F. McDonough (Eds.), Composition, deep structure and evolution of continents. Developments in Geotectonics, vol. 24, p. 171–194. https://doi.org/10.1016/S0024-4937(99)00026-2.

104. Pearson D.G., Irvine G.J., Carlson R.W., Kopylova M.G., Ionov D.A., 2002. The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. In: C.M.R. Fowler, C.J. Ebinger, C.J. Hawkesworth (Eds.), The Early Earth: physical, chemical and biological development. Geological Society, London, Special Publications, vol. 199, p. 65–90. https://doi.org/10.1144/GSL.SP.2002.199.01.04.

105. Pearson D.G., Snyder G.A., Shirey S.B., Taylor L.A., Carlson R.W., Sobolev N.V., 1995. Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374 (6524), 711–713. https://doi.org/10.1038/374711a0.

106. Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V., 2018. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust. Tectonophysics 746, 572–586. https://doi.org/10.1016/j.tecto.2016.11.041.

107. Pernet-Fisher J.F., Howarth G.H., Liu Y., Barry P.H., Carmody L., Valley J.W., Bodnar R.J., Spetsius Z.V., Taylor L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology 167 (3), 981. https://doi.org/10.1007/s00410-014-0981-y.

108. Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.

109. Pokhilenko N.P., Pearson D.G., Boyd F.R., Sobolev N.V., 1991. Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington Yearbook 90, 11–18.

110. Pokhilenko N.P., Sobolev N.V., Chernyi S.D., Yanygin Yu.T., 2000. Pyropes and chromites from kimberlites in the Nakyn Field (Yakutia) and Snipe Lake District (Slave River Region, Canada): evidence for anomalous structure of the lithosphere. Doklady Earth Sciences 372 (4), 638–642.

111. Pokhilenko N.P., Sobolev N.V., Sobolev V.S., Lavrent’ev Yu.G., 1976. Xenolith of diamond-bearing ilmenite-pyrope lherzolite from the Udachnaya pipe (Yakutia). Doklady AN SSSR 231 (2), 438–441 (in Russian)

112. Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.

113. Ponomarenko A.I., Sobolev N.V., Pokhilenko N.P., Lavrentiev Yu.G., Sobolev V.S., 1976. Diamondiferous grospidite and diamondiferous dystenic eclogites from the Udachnaya kimberlite pipe, Yakutia. Doklady AN SSSR 226 (4), 927–930 (in Russian)

114. Pouchou J.L., Pichoir F., 1984. A new model for quantitative X-ray microanalysis. Part I: application to the analysis of homogeneous samples. Recherche Aerospatiale 3, 167–192.

115. Riches A.J.V., Liu Y., Day J.M.D., Spetsius Z.V., Taylor L.A., 2010. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120 (3–4), 368–378. https://doi.org/10.1016/j.lithos.2010.09.006.

116. Roden M.F., Patiño-Douce A.E., Jagoutz E., Laz'ko E.E., 2006. High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90 (1–2), 77–91. https://doi.org/10.1016/j.lithos.2006.01.005.

117. Rodionov A.S., Pokhilenko N.P., Sobolev N.V., 1984. Comparative characteristics of the main minerals of the concentrates of two types from the Dalnyaya kimberlite pipe. Geologiya i Geofizika (Russian Geology and Geophysics) 25 (5), 38–50 (in Russian)

118. Rosen O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192.

119. Rosen O.M., Levskii L.K., Zhuravlev D.Z., Rotman A.Ya., Spetsius Z.V., Makeev A.F., Zinchuk N.N., Manakov A.V., Serenko V.P., 2006. Paleoproterozoic accretion in the northeast Siberian craton: isotopic dating of the Anabar collision system. Stratigraphy and Geological Correlation 14 (6), 581–601. https://doi.org/10.1134/S0869593806060013.

120. Rosen O.M., Manakov A.V., Zinchuk N.N., 2006. Siberian Craton: Formation, and Diamond Content. Nauchny Mir, Moscow, 212 p. (in Russian)

121. Rosen O.M., Serenko V.P., Spetsius Z.V., Manakov A.V., Zinchuk N.N., 2002. Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (1), 3–26.

122. Ryan C.G., Griffin W.L., Pearson N.J., 1996. Garnet geotherms: Pressure‐temperature data from Cr‐pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research: Solid Earth 101 (B3), 5611–5625. https://doi.org/10.1029/95JB03207.

123. Santosh M., Maruyama S., Yamamoto S., 2009. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research 15 (3–4), 324–341. https://doi.org/10.1016/j.gr.2008.11.004.

124. Sekerin A.P., Menshagin Yu.V., Laschenov V.A., 1988. Alkaline-ultrabasic rocks and carbonatites of the Eastern Sayan region. Doklady AN SSSR 299 (3), 711–714 (in Russian)

125. Sekerin A.P., Menshagin Yu.V., Lashchenov V.A., 1993. Precambrian lamproites of the Sayan region. Doklady AN SSSR 329 (3), 328–331 (in Russian)

126. Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Research 28 (1), 106–120. https://doi.org/10.1016/j.gr.2014.03.018.

127. Smelov A.P., Andreev A.P., Altukhova Z.A., Babushkina S.A., Bekrenev K.A., Zaitsev A.I., Izbekov E.D., Koroleva O.V., Mishnin V.M., Okrugin A.V., Oleinikov O.B., Surnin A.A., 2010. Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russian Geology and Geophysics 51 (1), 121–126. https://doi.org/10.1016/j.rgg.2009.12.012.

128. Smelov A.P., Ashchepkov I.V., Oleinikov O.B., Surnin A.A., Babushkina S.A., Polufuntikova L.I., Koroleva O.V., 2009. Chemical composition and PT conditions for the formation of barophilic minerals of the Manchary kimberlite pipe (Central Yakutia). Otechestvennaya Geologia (Russian Geology) (5), 27–31 (in Russian)

129. Smelov A.P., Biller A.Ya., Zaitsev A.I., 2011. Ratio of different crystal-morphological types of diamond in tuffites of the Carnian tier of the north-eastern part of the Yakutia kimberlite province. Otechestvennaya Geologia (Russian Geology) (5), 50–55 (in Russian)

130. Smelov A.P., Kotov A.B., Sal’nikova E.B., Kovach V.P., Beryozkin V.I., Kravchenko A.A., Dobretsov V.N., Velikoslavinskii S.D., Yakovleva S.Z., 2012. Age and duration of the formation of the Billyakh tectonic melange zone, Anabar shield. Petrology 20 (3), 286–300. https://doi.org/10.1134/S0869591112030058.

131. Smelov A.P., Kovach V.P., Gabyshev V.D., 1998. Tectonic structure and age of the basement of the eastern part of the North Asian craton. Otechestvennaya Geologia (Russian Geology) (6), 6–10 (in Russian)

132. Smelov A.P., Zaitsev A.I., 2013. The age and localization of kimberlite magmatism in the Yakutian kimberlite province: constraints from isotope geochronology – an overview. In: D.G. Pearson et al. (Eds.), Proceedings of 10th International Kimberlite Conference, vol. 1 (Special Issue of the Journal of the Geological Society of India), p. 225–234. https://doi.org/10.1007/978-81-322-1170-9_14.

133. Smith C.B., Pearson D.G., Bulanova G.P., Beard A.D., Carlson R.W., Wittig N., Sims K., Chimuka L., Muchemwa E., 2009. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos 112 (Supplement 2), 1120–1132. https://doi.org/10.1016/j.lithos.2009.05.013.

134. Snyder D.B., 2008. Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27 (4), TC4006. https://doi.org/10.1029/2007TC002132.

135. Snyder D.B., Humphreys E., Pearson D.G., 2017. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485. https://doi.org/10.1016/j.tecto.2016.11.032.

136. Snyder G.A., Taylor L.A., Crozaz G., Halliday A.N., Beard B.L., Sobolev V.N., Sobolev N.V., 1997. The origins of Yakutian eclogite xenoliths. Journal of Petrology 38 (1), 85–113. https://doi.org/10.1093/petroj/38.1.85.

137. Sobolev N.V., 1974. Deep Inclusions in Kimberlites and the Problem of the Upper Mantle Composition. Nauka, Novosibirsk, 264 p. (in Russian)

138. Sobolev N.V., Lavrent'ev Y.G., Pokhilenko N.P., Usova L.V., 1973. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology 40 (1), 39–52. https://doi.org/10.1007/BF00371762.

139. Sobolev N.V., Logvinova A.M., Nikolenko E.I., Lobanov S.S., 2013. Mineralogical criteria for the diamond potential of Upper Triassic placers on the northeastern margin of the Siberian Platform. Russian Geology and Geophysics 54 (8), 903–916. https://doi.org/10.1016/j.rgg.2013.07.010.

140. Sobolev N.V., Logvinova A.M., Zedgenizov D.A., Seryotkin Y.V., Yefimova E.S., Floss C., Taylor L.A., 2004. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (1–4), 225–242. https://doi.org/10.1016/j.lithos.2004.04.001.

141. Sobolev N.V., Pokhilenko N.V., Efimova E.S., 1984. Xenoliths of diamond bearing peridotites in kimberlites and problem of the diamond origin. Geologiya i Geofizika (Soviet Geology and Geophysics) 25 (12), 63–80 (in Russian)

142. Sobolev N.V., Pustyntsev V.I., Kuznetsova I.K., Khar'kiv A.D., 1970. New data on the mineralogy of the diamond-bearing eclogites from the “Mir” pipe (Yakutia). International Geology Review 12 (6), 657–659. https://doi.org/10.1080/00206817009475272.

143. Sobolev N.V., Sobolev V.N., Snyder G.A., Yefimova E.S., Taylor L.A., 1999. Significance of eclogitic and related parageneses of natural diamonds. International Geology Review 41 (2), 129–140. https://doi.org/10.1080/0020681990 9465135.

144. Sobolev V.S., Sobolev N.V., 1967. About chromium and chromium-containing minerals in deep xenoliths of kimberlite pipes. Geologiya Rudnykh Mestorozhdeniy (Geology of Ore Deposits) (2), 18–37 (in Russian)

145. Spetsius Z.V., 2004. Petrology of highly aluminous xenoliths from kimberlites of Yakutia. Lithos 77 (1–4), 525–538. https://doi.org/10.1016/j.lithos.2004.04.021.

146. Spetsius Z.V., Belousova E.A., Griffin W.L., O’Reilly S.Y., Pearson N.J., 2002. Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters 199 (1–2), 111–126. https://doi.org/10.1016/j.lithos.2004.04.021.

147. Spetsius Z.V., Serenko V.P., 1990. Composition of the Continental Mantle and Lower Crust beneath the Siberian Platform. Nauka, Moscow, 271 p. (in Russian)

148. Spetsius Z.V., Taylor L.A., Valley J.W., Deangelis M.T., Spicuzza M., Ivanov A.S., Banzeruk V.I., 2008. Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. European Journal of Mineralogy 20 (3), 375–385. https://doi.org/10.1127/0935-1221/2008/0020-1828.

149. Stachel T., Viljoen K.S., McDade P., Harris J.W., 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton – the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contributions to Mineralogy and Petrology 147 (1), 32–47. https://doi.org/10.1007/s00410-003-0535-1.

150. Sun J., Liu C.-Z., Tappe S., Kostrovitsky S.I., Wu F.-Y., Yakovlev D., Yang Y.-H., Yang J.-H., 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters 404, 283–295. https://doi.org/10.1016/j.epsl.2014.07.039.

151. Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Y., Wu F.-Y., 2018. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.

152. Suvorov V.D., Mel’nik E.A., Mishen’kina Z.R., Pavlov E.V., Kochnev V.A., 2013. Seismic inhomogeneities in the upper mantle beneath the Siberian craton (Meteorite profile). Russian Geology and Geophysics 54 (9), 1108–1120. https://doi.org/10.1016/j.rgg.2013.07.023.

153. Suvorov V.D., Melnik E.A., Thybo H., Perchuć E., Parasotka B.S., 2006. Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia. Tectonophysics 420 (1–2), 49–73. https://doi.org/10.1016/j.tecto.2006.01.009.

154. Suvorov V.D., Yurin Yu.A., Parasotka B.S., 1994. The structure of the lower crust and the mantle top in the western part of the Yakutia kimberlite province (according to the deep seismic sounding data). Geologiya i Geofizika (Russian Geology and Geophysics) 35 (11), 126–133 (in Russian)

155. Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at AillikBay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology 47 (7), 1261–1315. https://doi.org/10.1093/petrology/egl008.

156. Taylor L.A., Snyder G.A., Keller R., Remley D.A., Anand M., Wiesli R., Valley J., Sobolev N.V., 2003. Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contributions to Mineralogy and Petrology 145 (4), 424–443. https://doi.org/10.1007/s00410-003-0465-y.

157. Taylor W.R., Kammerman M., Hamilton R., 1998. New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In: 7th International kimberlite conference. Extended abstracts. Cape Town, p. 891–901.

158. Tolstov A.V., Minin V.A., Vasilenko V.B., Kuznetsova L.G., Razumov A.N., 2009. A new body of highly diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province. Russian Geology and Geophysics 50 (3), 162–173. https://doi.org/10.1016/j.rgg.2008.09.001.

159. Van Hunen J, van den Berg A.P., 2008. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103 (1–2), 217–235. https://doi.org/10.1016/j.lithos.2007.09.016.

160. Vladimirov B.M., Volyanyuk N.Ya., Ponomarenko A.I., 1976. Deep Inclusions in Kimberlites, Basalts and Kimberlite-Like Rocks. Nauka, Moscow, 284 p. (in Russian)

161. Wyllie P.J., Ryabchikov I.D., 2000. Volatile components, magmas and critical fluids in upwelling mantle. Journal of Petrology 41 (7), 1195–1206. https://doi.org/10.1093/petrology/41.7.1195.

162. Zaitsev A.I., Smelov A.P., 2010. Isotopic Geochronology of Rocks of the Kimberlite Formation of the Yakutia Province. Institute of Geology of Diamond and Precious Metals SB RAS, Yakutsk, 105 p. (in Russian)


Review

For citations:


Ashchepkov I.V., Ivanov A.S., Kostrovitsky S.I., Vavilov M.A., Babushkina S.A., Vladykin N.V., Tychkov N.S., Medvedev N.S. MANTLE TERRANES OF THE SIBERIAN CRATON: THEIR INTERACTION WITH PLUME MELTS BASED ON THERMOBAROMETRY AND GEOCHEMISTRY OF MANTLE XENOCRYSTS. Geodynamics & Tectonophysics. 2019;10(2):197-245. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0412

Views: 1991


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)