HEAT AND MASS TRANSFER IN THE UPPER MANTLE AND THE DEEP CRUST: PETROLOGICAL INDICATORS AND MATHEMATICAL MODELING
https://doi.org/10.5800/GT-2019-10-2-0411
About the Authors
A. G. VladimirovRussian Federation
Aleksander G. Vladimirov - Doctor of Geology and Mineralogy, Professor
3 Academician Koptyug ave., Novosibirsk 630090,
2 Pirogov street, Novosibirsk 630090,
50 Lenin ave., Tomsk 634050
N. N. Kruk
Russian Federation
Nikolai N. Kruk - Doctor of Geology and Mineralogy, Director of the Institute
3 Academician Koptyug ave., Novosibirsk 630090
О. Р. Polyansky
Russian Federation
Oleg P. Polyansky - Doctor of Geology and Mineralogy, Head of Laboratory
3 Academician Koptyug ave., Novosibirsk 630090,
2 Pirogov street, Novosibirsk 630090
A. V. Travin
Russian Federation
Aleksei V. Travin Doctor of Geology and Mineralogy
3 Academician Koptyug ave., Novosibirsk 630090,
2 Pirogov street, Novosibirsk 630090,
50 Lenin ave., Tomsk 634050
References
1. Anderson D.L., 2005. Large igneous provinces, delamination, and fertile mantle. Elements 1 (5), 271–275. https:// doi.org/10.2113/gselements.1.5.271.
2. Ashchepkov I.V., Ivanov A.S., Kostrovitsky S.I., Vavilov M.A., Babushkina S.A., Vladykin N.V., Tychkov N.S., Medvedev N.S., 2019. Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts. Geodynamics & Tectonophysics 10 (2), 197–245 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0412.
3. Bercovici D., 2007. Mantle dynamics past, present, and future: an introduction and overview. In: D. Bercovici (Ed.), Mantle dynamics. Treatise on Geophysics, vol. 7, p. 1–30.
4. Bryan S.E., Ernst R.E., 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews 86 (1–4), 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008.
5. Dannberg J., Sobolev S.V., 2015. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nature Communications 6, 6960. https://doi.org/10.1038/ncomms7960.
6. Davies J.H., von Blanckenburg F., 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129 (1–4), 85–102. https://doi.org/10.1016/0012-821X(94)00237-S.
7. Dobretsov N.L., 1993. Geology and Tectonics of Gorny Altai. Guide-Book for Post-Symposium Excursion of the 4th International Symposium of the IGCP Project 283 “Geodynamic Evolution of the Paleoasian Ocean”. Novosibirsk, 122 p.
8. Dobretsov N.L., 1995. Problems of the relationship of tectonics and metamorphism. Petrologiya (Petrology) 3 (1), 4–23 (in Russian)
9. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep-Level Geodynamics. Siberian Branch of RAS Publishing House, Geo Branch, Novosibirsk, 408 p. (in Russian)
10. Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E., 2006. The lithosphere beneath Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineralogy and Petrology 88 (3–4), 419–441. https://doi.org/10.1007/s00710-006-0121-0.
11. Khain V.E., Lobkovsky L.I., 1990. On the features of the formation of collision orogens. Geotektonika (Geotectonics) (6), 20–31. (in Russian)
12. Khain V.E., Tychkov S.A., Vladimirov A.G., 1996. Collision orogeny: a model for the detachment of a subducted oceanic lithosphere plate as a result of continental collision. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (1), 5–16
13. Khanchuk A.I., Grebennikov A.V., Ivanov V.V., 2019. Albian-Cenomanian marginal continental orogenic belt and the magmatic province of Pacific Asia. Russian Journal of Pacific Geology 38 (3), 4–37 (in Russian)
14. Kirdyashkin A.A., Kirdyashkin A.G., Surkov N.V., 2019. Features of melting in the thermichemical plume conduit and heat and mass transfer during crystallization differentiation of basaltic melt in a mushroom-shaped plume head. Geodynamics & Tectonophysics 10 (1), 1–19 (in Russian) https://doi.org/10.5800/GT-2019-10-1-0401.
15. Kirdyashkin A.G., Kirdyashkin A.A., Distanov V.E., Gladkov I.N., 2019. Experimental and theoretical modeling of diamondiferous plumes. Geodynamics & Tectonophysics 10 (2), 247–263 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0413.
16. Kuskov O.L., Kronrod V.A., Prokofyev A.A., Pavlenkova N.I., 2014. Thermochemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616, 154–166. https://doi.org/10.1016/j.tecto.2014.01.006.
17. Kuznetsov Yu.A., Izokh E.P., 1969. Geological evidence of intratelluric fluxes of heat and mass as agents of metamorphism and magma generation. In: Yu.A. Kuznetsov (Ed.), Problems of petrology and metallogeny, Vol. 1. Nauka, Moscow, p. 7–20 (in Russian)
18. Lobkovsky L.I., Nikishin A.I., Khain V.I., 2004. Modern Problems of Geotectonics and Geodynamics. Nauchny Mir, Moscow, 612 p. (in Russian)
19. Martynov Yu.A., Golozubov V.V., Khanchuk A.I., 2016. Mantle diapirism at convergent boundaries (Sea of Japan). Russian Geology and Geophysics 57 (5), 745–755. https://doi.org/10.1016/j.rgg.2015.09.016.
20. Morgan J.P., Reston T.J., Ranero C.R., 2004. Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link? Earth and Planetary Science Letters 217 (3–4), 263–284. https://doi.org/10.1016/S0012-821X(03)00602-2.
21. Morgan W.J., 1971. Convection plumes in the lower mantle. Nature 230 (5288), 42–43. https://doi.org/10.1038/230042a0.
22. Murzintsev N.G., Annikova I.Yu., Travin A.V., Vladimirov A.G., Dyachkov B.A., Maslov V.I., Oitseva T.A., Gavryushkina O.A., 2019. Thermochronology and mathematical modeling of the formation dynamics of rare-metal-granite deposits of the Altai collision system. Geodynamics & Tectonophysics 10 (2) 375–404 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0419.
23. Norton I.O., 2000. Global hotspot reference frames and plate motion. In: M.A. Richards, R.G. Gordon, R.D. Van Der Hilst (Eds.), The history and dynamics of global plate motions. AGU Geophysical Monograph Series, vol. 121, p. 339–357. https://doi.org/10.1029/GM121p0339.
24. O'Reilly S.Y., Griffin W.L., 2013. Moho vs crust – mantle boundary: evolution of an idea. Tectonophysics 609, 535–546. https://doi.org/10.1016/j.tecto.2012.12.031.
25. Osipova T.A., Kallistov G.A., Zaitceva M.V., 2019. Zircon in high-Mg diorite of the Chelyabinsk massif (South Urals): morphology, geochemical signature, and petrogenesis implications. Geodynamics & Tectonophysics 10 (2), 289–308 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0415.
26. Polyansky O.P., Kargopolov S.A., Izokh A.E., Semenov A.N., Babichev A.V., Vasilevsky A.N., 2019. The role of magmatic heat sources in the formation of regional and contact metamorphic areas in West Sangilen (Tuva, Russia). Geodynamics & Tectonophysics 10 (2), 309–323 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0416.
27. Puchkov V.N., 2007. Plumeand plate tectonics interrelations in the perspective of the development of the global geodynamic theory. In: Geodynamics, magmatism, metamorphism and mineralization. IGG Ural Branch RAS, Ekaterinburg, p. 23–51 (in Russian)
28. Ricard Y., 2007. Physics of mantle convection. In: D. Bercovici (Ed.), Mantle dynamics. Treatise on Geophysics, vol. 7, p. 437–505.
29. Rudnev S.N., 2010. Early Paleozoic Granitoid Magmatism of the Altai-Sayan Folded Region and Lake Zone of Western Mongolia. Author’s brief thesis (Doctor of Geology and Mineralogy). Novosibirsk, 32 p. (in Russian)
30. Schubert G., Masters G., Olson P., Tackley P., 2004. Superplumes or plume clusters? Physics of the Earth and Planetary Interiors 146 (1–2), 147–162. https://doi.org/10.1016/j.pepi.2003.09.025.
31. Shelepaev R.A., Egorova V.V., Izokh A.E., Seltmann R., 2018. Collisional mafic magmatism of the fold-thrust belts framing southern Siberia (Western Sangilen, southeastern Tuva). Russian Geology and Geophysics 59 (5), 525–540. https:// doi.org/10.1016/j.rgg.2018.04.006.
32. Shokal’skii S.P., Babin G.A., Vladimirov A.G., Borisov S.M., Gusev N.I., Tokarev V.N., Zybin V.A., Dubskii V.S., Murzin O.V., Krivchikov V.A., Kruk N.N., Rudnev S.N., Fedoseev G.S., Titov A.V., Sergeev V.P., Likhachev N.N., Mamlin A.N., Kotel’nikov E.I., Kuznetsov S.A., Zeifert L.L., Yashin V.D., Noskov Yu.S., Uvarov A.N., Fedak S.I., Gusev A.I., Vystavnoy S.A., 2000. Correlation of Magmatic and Metamorphic Complexes of the Western Part of the Altai-Sayan Folded Region. Siberian Branch of RAS Publishing House, Novosibirsk, 120 p. (in Russian)
33. Thybo H., Artemieva I.M., 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032.
34. Travin A.V., 2016. Thermochronology of Early Paleozoic collisional and subduction-collisional structures of Central Asia. Russian Geology and Geophysics 57 (3), 434–450. https://doi.org/10.1016/j.rgg.2016.03.006.
35. Trubitsyn V.P., 2012. Rheology of the mantle and tectonics of the oceanic lithospheric plates. Izvestiya, Physics of the Solid Earth 48 (6), 467–485. https://doi.org/10.1134/S1069351312060079.
36. Trubitsyn V.P., Evseev M.N., 2014. Mantle plumes at the boundary of the upper and lower mantle. Doklady Earth Sciences 459 (1), 1397–1399. https://doi.org/10.1134/S1028334X14110099.
37. Trubitsyn V.P., Evseev M.N., 2018. Plume mode of thermal convection in the Earth’s mantle. Izvestiya, Physics of the Solid Earth 54 (6), 838–848. https://doi.org/10.1134/S1069351318060125.
38. Trubitsyn V.P., Evseev M.N., Trubitsyn A.P., 2015. Influence of continents and lithospheric plates on the shape of D′′ layer and the spatial distribution of mantle plumes. Russian Journal of Earth Sciences 15 (3), ES3001. https:// doi.org/10.2205/2015ES000552.
39. Turkina O.M., 2002. Petrology of the Precambrian Tonalite-Trondhjemite Complexes of the Southwestern Margin of the Siberian Craton. Author’s brief thesis (Doctor of Geology and Mineralogy). Novosibirsk, 38 p. (in Russian)
40. Tychkov S.A., Vladimirov A.G., 1997. Model of break-off of the subducted oceanic lithosphere in the Indo-Eurasian collision zone. Doklady Earth Sciences 354 (4), 515–518.
41. Udoratina O.V., Coble M.A., Shuyskiy A.S., Kapitanova V.A., 2019. Mafic inclusions (Sobsky complex, Polar Ural): U-Pb (SIMS) data. Geodynamics & Tectonophysics 10 (2) 265–288 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0414.
42. van Keken P.E., 1997. Evolution of starting mantle plumes: a comparison between numerical and laboratory models. Earth and Planetary Science Letters 148 (1–2), 1–11. https://doi.org/10.1016/S0012-821X(97)00042-3.
43. van Keken P.E., Ballentine C.J., 1999. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature‐dependent rheology. Journal of Geophysical Research: Solid Earth 104 (B4), 7137–7151. https:// doi.org/10.1029/1999JB900003.
44. Vladimirov A.G., Izokh A.E., Polyakov G.V., Babin G.A., Mekhonoshin A.S., Kruk N.N., Khlestov V.V., Khromykh S.V., Travin A.V., Yudin D.S., Shelepayev R.A., Karmysheva I.V., Mikheev E.I., 2013. Gabbro-granite intrusive series and their indicator importance for geodynamic reconstructions. Petrology 21 (2), 158–180. https://doi.org/10.1134/S0869591113020070.
45. Vladimirov A.G., Kruk N.N., Khromykh S.V., Polyansky O.P., Chervov V.V., Vladimirov V.G., Travin A.V., Babin G.A., Kuibida M.L., Khomyakov V.D., 2008. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russian Geology and Geophysics 49 (7), 468–479. https://doi.org/10.1016/j.rgg.2008.06.006.
46. Vladimirov A.G., Mekhonoshin A.S., Khromykh S.V., Mikheev E.I., Travin A.V., Volkova N.I., Kolotilina T.B., Davydenko Yu.A., Borodina E.V., Khlestov V.V., 2017. Mechanisms of mantle crust interaction at deep levels of collision orogens (case of the Olkhon region, West Pribaikalie). Geodynamics & Tectonophysics 8 (2), 223–268 (in Russian) https://doi.org/10.5800/GT-2017-8-2-0240.
47. Vladimirov A.G., Travin A.V., Phan Luu Anh, Murzintsev N.G., Annikova I.Yu., Mikheev E.I., Nguyen Anh Duong, Tran Thi Man, Tran Thi Lan, 2019. Thermochronology of granitoid batholiths and their transformation into metamorphic core complexes (example of Song-Chai massif, Northern Vietnam). Geodynamics & Tectonophysics 10 (2), 347–373 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0418.
48. Vladimirov A.G., Vladimirov V.G., Polyansky O.P., 2017. Mingling processes in the Earth's crust: geological observations and mathematical simulation. Geodynamics & Tectonophysics 8 (2), 217–222 (in Russian) https://doi.org/10.5800/GT-2017-8-2-0239.
49. Vladimirov V.G., Yakovlev V.A., Karmysheva I.V., 2019. Mechanisms of magmatic mingling in composite dykes: models of dispersion and shear dilatation. Geodynamics & Tectonophysics 10 (2), 325–345 (in Russian) https://doi.org/10.5800/GT-2019-10-2-0417.
50. Yoshida M., Santosh M., 2011. Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models. Earth-Science Reviews 105 (1–2), 1–24. https://doi.org/10.1016/j.earscirev.2010.12.002.
51. Zhong S., 2006. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. Journal of Geophysical Research: Solid Earth 111 (B4), B04409. https://doi.org/10.1029/2005JB003972.
52. Zhong S., Zuber M.T., Moresi L., Gurnis M., 2000. Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth 105 (B5), 11063–11082. https://doi.org/10.1029/2000JB900003.
Review
For citations:
Vladimirov A.G., Kruk N.N., Polyansky О.Р., Travin A.V. HEAT AND MASS TRANSFER IN THE UPPER MANTLE AND THE DEEP CRUST: PETROLOGICAL INDICATORS AND MATHEMATICAL MODELING. Geodynamics & Tectonophysics. 2019;10(2):189-196. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0411