Preview

Geodynamics & Tectonophysics

Advanced search

THE ORIGIN AND STRUCTURE OF THE LOWER CRUST OF OCEANS AND BACK-ARC SEAS: EVIDENCE FROM THE MARKOV DEEP (MID-ATLANTIC RIDGE) AND THE VOIKAR OPHIOLITE ASSOCIATION (POLAR URALS)

https://doi.org/10.5800/GT-2019-10-1-0406

Abstract

The Markov Deep (the axial part of the slow-spreading Mid-Atlantic Ridge, 6°N, Sierra Leone oceanic core complex) and the Paleozoic Voikar ophiolite association (Polar Urals) formed in the back-arc sea conditions. In both cases, the lower crust of a close structure was formed on the basements composed ofdepleted peridotites of the ancient lithospheric mantle. The available data show that the composition of the lower crust of the oceans and back-arc seas is dominated by layeredmafic-ultramafic intrusions originating from the MORB melts, and suggest a similar asthenospheric source of magmas. Sills and dykes formed from other magma sources represent the second structural element of the lower oceanic crust: in case of the ocean, mainly ferrogabbroids originating from specific melts with the OIB involvement, and, in case of the back-sea sea, gabbro-norites of the supra-subduction calc-alkaline series. In both cases, the upper crust originates frombasaltic flows that occurred later and are associated with new episodes in the tectonic development. According to [Sharkov, 2012], the development of slow-spreading ridges takes place in discrete impulses and non-simultaneously along their entire length. Furthermore, oceanic core complexes (OCC) in their axial parts are the ridge segments, where spreading is resumed. At the OCC stage, newly formed basalt melts move upwards from the magma generation zone into fractures (dykes) through the lithospheric mantle, and the thickness of the lower crust is built up by sills. As spreading develops in this area, the crust becomes thicker from below due to underplating in form of large layered intrusions. The newly formed restites, in their turn, cause an increase in the lithospheric mantle thickness from below. Apparently, the lower crust formed in the back-arc seas according to a similar scenario, although complicated by the processes taking place in the subduction zone.

About the Author

E. V. Sharkov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS
Russian Federation
Evgeny V. Sharkov - Doctor of Geology and Mineralogy, Professor 
35 Staromonetnyi per., Moscow 109017


References

1. Andres M., Blichert-Toft J., Schilling J.G., 2004. Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth and Planetary Science Letters 225 (1–2), 89–103. https://doi.org/10.1016/j.epsl.2004.05.041.

2. Aranovich L.Ya., Bortnikov N.S., Serebryakov N.S., Sharkov E.V., 2010. Conditions of the formation of plagiogranite from the Markov Trough, Mid-Atlantic Ridge, 5°52′–6°02′ N. Doklady Earth Sciences 434 (1), 1257–1262. https://doi.org/10.1134/S1028334X10090254.

3. Basaltic Volcanism on the Terrestrial Planets, 1981. Pergamon Press, New York, 1286 p.

4. Bogatikov O.A., Kovalenko V.I., Sharkov E.V., 2010. Magmatism, Tectonics, and Geodynamics of the Earth. Nauka, Moscow, 606 p. (in Russian)

5. Bogdanov N.A., 1988. Tectonics of Deep-Water Basins of Marginal Seas. Nedra, Moscow, 221 p. (in Russian)

6. Bortnikov N.S., Sharkov E.V., 2011. Oceanic core complex and newly-formed basalts in axial part of Mid-Atlantic Ridge (5–7°N). In: 2011 AGU Fall Meeting (5–9 December, 2011). San Francisco, California, USA, Paper Number OS11B-1499.

7. Bortnikov N.S., Sharkov E.V., Bogatikov O.A., Zinger T.F., Lepekhina E.N., Antonov A.V., Sergeev S.A., 2008. Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54′–5°02.2′ N (Results of SHRIMP-II U-Pb dating): Implication for deep geodynamics of modern oceans. Doklady Earth Sciences 421 (1), 859–866. https://doi.org/10.1134/S1028334X08050334.

8. Ciazela J., Koepke J., Dick H.J., Muszynski A., 2015. Mantle rock exposures at oceanic core complexes along mid-ocean ridges. Geologos 21 (4), 207–231. https://doi.org/10.1515/logos-2015-0017.

9. Conference Outline, 2010. In: Detachments in oceanic lithosphere: deformation, magmatism, fluid flow, and ecosystems. AGU Chapman Conference. Agros, Cyprus, 8–15 May, 2010. Conference Report, p. 20–21.

10. Crawford A.J., Fallon T.J., Green D.H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: A.J. Crawford (Ed.), Boninites and related rocks. Unwin Hyman, London, p. 2–44.

11. Dick H.J.B., Robinson P.T., Meyers P.S., 1992. The plutonic foundation of a low-spreading ridge. In: R.A. Duncan, D.K. Rea, R.B. Kidd, U. von Rad, J.K. Weissel (Eds.), Synthesis of results from scientific drilling in the Indian ocean. Geophysical Monograph Series, vol. 70, р. 1–39. https://doi.org/10.1029/GM070p0001.

12. Dick H.J.B., Tivey M.A., Tucholke B.E., 2008. Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochemistry, Geophysics, Geosystems 9 (5), Q05014. https://doi.org/10.1029/2007GC001645.

13. Dilek Y., Furnes H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123 (3–4), 387–411. https://doi.org/10.1130/B30446.1.

14. Dobretsov N.L., Kirdyashkin A.G., Kirdyaskin A.A., 2001. Deep-Level Geodynamics. Novosibirsk, Siberian Branch of the RAS Publishing House, “Geo” Branch, 407 p. (in Russian)

15. Dunn R.A., Arai R., Eason D.E., Canales J.P., Sohn R.A., 2016. 3-D seismic imaging of lithospheric fault-block structures, core complex, alteration fronts, and hydrothermal system along the Mid-Atlantic Ridge, Rainbow area. In: AGU Fall Meeting (12–18 December, 2016). San Francisco, California, USA, Paper Number T32A-08.

16. Dunn R.A., Lekić V., Detrick R.S., Toomey D.R., 2005. Three-dimensional seismic structure of the Mid-Atlantic Ridge (35°N): Evidence for focused melt supply and lower crustal dike injection. Journal of Geophysical Research: Solid Earth 110 (B9), B09101. https://doi.org/10.1029/2004JB003473.

17. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 653 p.

18. Escartín J., Smith D.K., Cann J., Schouten H., Langmuir C.H., Escrig S., 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455 (7214), 790–795. https://doi.org/10.1038/nature07333.

19. Estrada S., Henjes-Kunst F., Burgath K.P., Roland N.W., Schäfer F., Khain E.V., Remizov D.N., 2012. Insights into the magmatic and geotectonic history of the Voikar Massif, Polar Urals. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 163 (1), 9–41. https://doi.org/10.1127/1860-1804/2012/0163-0009.

20. Girnis A.V., 2003. Olivine-orthopyroxene-melt equilibrium as a thermobarometer for mantle-derived magmas. Petrology 11 (2), 101–113.

21. Ildefonse B., Blackman D.K., John B.E., Ohara Y., Miller D.J., MacLeod C.J., 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35 (7), 623–626. https://doi.org/10.1130/G23531A.1.

22. Kirdyashkin A.A., Kirdyashkin A.G., 2013. Experimental and theoretical simulation of the thermal and hydrodynamic structure of a subducting plate. Geotectonics 47 (3), 156–166. https://doi.org/10.1134/S0016852113030047.

23. Knipper A.L., Sharaskin A.Y., Savelieva G.N., 2001. Geodynamic factors responsible for origin of diverse ophiolite sequences. Geotectonics 35 (4), 247–264.

24. Kurenkov S.A., Didenko A.N., Simonov V.A., 2002. Geodynamics of Paleospreading. GEOS, Moscow, 294 p. (in Russian)

25. Langmuir C.H.L., Forsyth D.W., 2007. Mantle melting beneath mid-ocean ridges. Oceanography 20 (1), 78–89. https://doi.org/10.5670/oceanog.2007.82.

26. Laz’ko E.E., Gladkov N.G., 1991. Ultrabasites and gabbroids of the Aypod Depression (Yap Fault, Philippine Sea). Izvestiya AN SSSR, Geological Series (6), 47–65 (in Russian)

27. MacLeod C.J., Searle R.C., Murton B.J., Casey J.F., Mallows C., Unsworth S.C., Achenbach K.L., Harris M., 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 287 (3–4), 333–344. https://doi.org/10.1016/j.epsl.2009.08.016.

28. Molnar P., Atwater T., 1978. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere. Earth and Planetary Science Letters 41 (3), 330–340. https://doi.org/10.1016/0012-821X(78)90187-5.

29. Ohara Y., Fujioka K., Ishizuka O., Ishii T., 2002. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate. Chemical Geology 189 (1–2), 35–53. https://doi.org/10.1016/S0009-2541(02)00062-1.

30. Ohara Y., Yoshida T., Kato Y., Kasuga S., 2001. Giant megamullion in the Parece Vela backarc basin. Marine Geophysical Researches 22 (1), 47–61. https://doi.org/10.1023/A:1004818225642.

31. Pearce J., 2002. The oceanic lithosphere. JOIDES Journal 28 (1), 61–66 (Special Issue: Achievements and Opportunities of Scientific Ocean Drilling).

32. Philpotts A., Ague J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge, 684 p. https://doi.org/10.1017/CBO9780511813429.

33. Pushcharovsky Yu.M., Skolotnev S.G., Peive A.A., Bortnikov N.S., Bazilevskaya E.S., Mazarovich A.O., 2004. Geology and Metallogeny of the Mid-Atlantic Ridge: 5–7°N. GEOS, Moscow, 151 p. (in Russian)

34. Queiroga G., Martins M., Kuznetsov N., Chemale F. Jr., Dussin I., Pedrosa-Soares A.C., Kulikova K., de Castro M.P., 2016. Timing of lower crust generation in The Voykar ophiolite massif, Polar Urals, Russia: U-Pb (LA-ICP-MS) data from plagiogranite zircons. Ofioliti 41 (2), 75–84. https://doi.org/10.4454/ofioliti.v41i2.443.

35. Quick J.E., Denlinger R.P., 1993. Ductile deformation and the origin of layered gabbro in ophiolites. Journal of Geophysical Research: Solid Earth 98 (B8), 14015–14027. https://doi.org/10.1029/93JB00698.

36. Rudnick R., 1990. Growing from below. Nature 347 (6295), 711–712. https://doi.org/10.1038/347711a0.

37. Savel’eva G.N., Bortnikov N.S., Peyve A.A., Skolotnev S.G., 2006. Ultramafic rocks from the Markov Deep in the rift valley of the Mid-Atlantic Ridge. Geochemistry International 44 (11), 1105–1120. https://doi.org/10.1134/S0016702906110024.

38. Savelieva G.N., Batanova V.G., Berezhnaya N.A., Presnyakov S.L., Sobolev A.V., Skublov S.G., Belousov I.A., 2013. Polychronous formation of mantle complexes in ophiolites. Geotectonics 47 (3), 167–179. https://doi.org/10.1134/S0016852113030060.

39. Savelieva G.N., Sobolev A.V., Batanova V.G., Suslov P.V., Brügmann G., 2008. Structure of melt flow channels in the mantle. Geotectonics 42 (6), 430–447. https://doi.org/10.1134/S0016852108060022.

40. Savelyeva G.N., 1987. Gabbro-Ultrabasic Complexes of the Ural Ophiolites and Their Analogues in the Modern Oceanic Crust. Nauka, Moscow, 246 p. (in Russian)

41. Schilling J.G., Hanan B.B., McCully B., Kingsley R.H., Fontignie D., 1994. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb isotopic study. Journal of Geophysical Research: Solid Earth 99 (B6), 12005–12028. https://doi.org/10.1029/94JB00337.

42. Searle R., 2013. Mid-Oceanic Ridges. Cambridge University Press, Cambridge, 318 p.

43. Sharkov E.V., 2006. Formation of Stratified Intrusive Rocks and Associated Mineralization. Nauchny Mir, Moscow, 364 p. (in Russian)

44. Sharkov E.V., 2012. Cyclic development of axial parts of slow-spreading ridges: evidence from Sierra Leone area, the Mid-Atlantic Ridge, 5–7°N. In: E.V. Sharkov (Ed.), Tectonics, recent advances. InTech, Rijeka, p. 3–36.

45. Sharkov E.V., Abramov S.S., Simonov V.A., Krinov D.I., Skolotnev S.G., Bel’tenev V.E., Bortnikov N.S., 2007. Hydrothermal alteration and sulfide mineralization in gabbroids of the Markov Deep (Mid-Atlantic Ridge, 6° N). Geology of Ore Deposits 49 (6), 467–486. https://doi.org/10.1134/S1075701507060037.

46. Sharkov E.V., Bortnikov N.S., Bogatikov O.A., Zinger T.F., Bel’tenev V.E., Chistyakov A.V., 2005. Third Layer of the Oceanic Crust in the Axial Part of the Mid-Atlantic Ridge (Sierra Leone MAR Segment, 6°N). Petrology 13 (6), 540–570.

47. Sharkov E.V., Chistyakov A.V., Laz’ko E.E., 2001. The structure of the layered complex of the voikar ophiolite association (polar urals) as an indicator of mantle processes beneath a back-arc sea. Geochemistry International 39 (9), 831–847.

48. Sharkov E.V., Shatagin K.N., Krassivskaya I.S., Chernyshev I.V., Bortnikov N.S., Chistyakov A.V., Trubkin N.V., Kramchaninov A.Y., 2008. Pillow lavas of the Sierra Leone test site, Mid-Atlantic Ridge, 5°–7°N: Sr-Nd isotope systematics, geochemistry, and petrology. Petrology 16 (4), 335–352. https://doi.org/10.1134/S0869591108040024.

49. Sharkov E.V., Svalova V.B., 2011. Geological-geomechanical simulation of the Late Cenozoic geodynamics in the Alpine-Mediterranean Mobile Belt. In: E.V. Sharkov (Ed.), New Frontiers in Tectonic Research – General Problems, Sedimentary Basins and Island Arcs. InTech, Rijeka, p. 19–38.

50. Sharma M., Hofmann A.W., Wasserburg G.J., 1998. Melt generation beneath ocean ridges: Re-Os isotopic evidence from the Polar Ural ophiolite. Mineralogical Magazine 62A (V.M. Goldschmidt Conference Abstracts, Toulouse, 1998), 1375–1376.

51. Sharma M., Wasserburg G.J., Papanastassiou D.A., Quick J.E., Sharkov E.V., Laz'ko E.E., 1995. High 143Nd/144Nd in extremely depleted mantle rocks. Earth and Planetary Science Letters 135 (1–4), 101–114. https://doi.org/10.1016/0012-821X(95)00150-B.

52. Silantyev S.A., 1998. Origin conditions of the Mid-Atlantic Ridge plutonic complex at 13–17 N. Petrology 6 (4), 351–387.

53. Simonov V.A., Kolobov V.Yu., Peive A.A., 1999. Petrology and Geochemistry of Geodynamic Processes in the Central Atlantic. Publishing House of SB RAS, SRC UIGGM, Novosibirsk, 226 p. (in Russian)

54. Simonov V.A., Sharkov E.V., Kovyazin S.V., 2009. Petrogenesis of the Fe-Ti intrusive complexes in the Sierra Leone region, Central Atlantic. Petrology 17 (5), 488–502. https://doi.org/10.1134/S086959110905004X.

55. Skolotnev S.G., Bel’tenev V.E., Lepekhina E.N., Ipat’eva I.S., 2010. Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications. Geotectonics 44 (6), 462–492. https://doi.org/10.1134/S0016852110060038.

56. Thy P., 2003. Igneous petrology of gabbros from Hole 1105A: oceanic magma chamber processes. In: J.F. Casey, D.J. Miller (Eds.), Hammer Drilling and NERO, Scientific Results. Proceedings of the Ocean Drilling Program, vol. 179, p. 1-76. https://doi.org/10.2973/odp.proc.sr.179.017.2003.

57. Tucholke B.E., 1998. Discovery of “Megamullions” Reveals Gateways Into the Ocean Crust and Upper Mantle. OCEANUS 41 (1), 15–19.

58. Turcotte D.L., Schubert G., 2002. Geodynamics. 2nd edition. Cambridge University Press, Cambridge, 456 р.

59. Vasco D.W., Johnson L.R., Pulliam R.J., Earle P.S., 1994. Robust inversion of IASP91 travel time residuals for mantle P and S velocity structure, earthquake mislocations, and station corrections. Journal of Geophysical Research: Solid Earth 99 (B7), 13727–13755. https://doi.org/10.1029/93JB02023.

60. Wager L.R., Brown G.M., 1968. Layered Igneous Rocks. Oliver & Boyd, Edinburgh – London, 588 p. [Русский перевод: Уэйджер Л., Браун Г. Расслоенные изверженные породы. М.: Мир, 1970. 553 с.].

61. Wilson M., 1989. Igneous Petrogenesis, a Global Tectonic Approach. Unvin Hyman, London, 466 p.

62. Zorin Y.A., Sklyarov E.V., Belichenko V.G., Mazukabzov A.M., 2007. Evolution of island arcs and geodynamics of the Eastern Central Asian Foldbelt in the Neogea. Doklady Earth Sciences 412 (1), 39–42. https://doi.org/10.1134/S1028334X07010096.


Review

For citations:


Sharkov E.V. THE ORIGIN AND STRUCTURE OF THE LOWER CRUST OF OCEANS AND BACK-ARC SEAS: EVIDENCE FROM THE MARKOV DEEP (MID-ATLANTIC RIDGE) AND THE VOIKAR OPHIOLITE ASSOCIATION (POLAR URALS). Geodynamics & Tectonophysics. 2019;10(1):101-121. (In Russ.) https://doi.org/10.5800/GT-2019-10-1-0406

Views: 1240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)