Preview

Geodynamics & Tectonophysics

Advanced search

FEATURES OF MELTING IN THE THERMOCHEMICAL PLUME CONDUIT AND HEAT AND MASS TRANSFER DURING CRYSTALLIZATION DIFFERENTIATION OF BASALTIC MELT IN A MUSHROOM-SHAPED PLUME HEAD

https://doi.org/10.5800/GT-2019-10-1-0401

Abstract

The number Ka=N/N1 is used to evaluate the thermal power of a plume; N is the thermal power transferred from the plume base to its conduit, and N1 is the thermal power transferred from the plume conduit into the surrounding mantle. At the relative thermal power 1.9<Ka<10, after eruption of the melt from the plume conduit to the surface, melting occurs in the crustal block above the plume roof, resulting in the formation of a mushroom-shaped head of the plume. A thermochemical plume originates at the core-mantle boundary and ascends (melts up) to the surface. Based on laboratory and theoretical modeling data, we present the flow structure of melt in the conduit and the head of the thermochemical plume. The features of melting in the plume conduit are elucidated on the basis of the phase diagram of the CaO-MgO-Al2O3-SiO2 model system. The two upper convection cells of the plume conduit relate to the region of basic and ultrabasic compositions. Our study shows that melting in these cells proceeds according to monovariant equilibria of eutectic type L=Cpx+Opx+An+Sp and L=Fo+An+Cpx+Opx. In case of the CaO–MgO–Al2O3–SiO2–Na2O system, crystallization differentiation proceeds as separation of plagioclase crystals. Separation of plagioclase crystals enriched in anorthite component leads to enrichment of the residual melt in silica and alkaline components. Assuming the initial basaltic melt, we calculated the compositional changes in the melt, which are powered by the heat and mass transfer processes in the mushroom-shaped plume head. The calculations were performed in two stages: (1) after settling of refractory minerals; (2) after settling of plagioclase in the melt resulting from the first stage. In the second stage, the melt contains 88.5 % of plagioclase component. The calculations were performed for melt temperature Tmelt=1410 °C and pressure P=2.6 kbar and 6.3 kbar. The calculated weight contents of oxides, the normative compositions for solid phase, and the oxide content and normative composition for the residual melt were tabulated. The SiO2 content in the residual melt amounts to 59.6–62.3 % and corresponds to the crustal SiO2 content.

About the Authors

A. A. Kirdyashkin
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Alexei A. Kirdyashkin - Doctor of Geology and Mineralogy, Professor of RAS, Head of Laboratory V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS

3 Academician Koptyug ave., Novosibirsk 630090, 

2 Pirogov street, Novosibirsk 630090



A. G. Kirdyashkin
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation
Anatoly G. Kirdyashkin - Doctor of Technical Sciences, Lead Researcher

3 Academician Koptyug ave., Novosibirsk 630090



N. V. Surkov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS
Russian Federation

Nikita V. Surkov - Candidate of Geology and Mineralogy, Senior Researcher

3 Academician Koptyug ave., Novosibirsk 630090



References

1. Annen C., Blundy J.D., Sparks R.S.J., 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47 (3), 505–539. https://doi.org/10.1093/petrology/egi084.

2. Bell P.M., Roseboom E.H., 1969. Melting relationships of jadeite and albite to 45 kilobars with comments on melting diagrams of binary systems at high pressures. In: J.J. Papike, F.R. Boyd, J.R. Clark, W.G. Ernst, W.T. Holser (Eds.), Pyroxenes and amphiboles: crystal chemistry and phase petrology. Mineralogical Society of America Special Paper, vol. 2, p. 151–161.

3. Bowen N.L., 1913. The melting phenomena of the plagioclase feldspars. American Journal of Science 35 (210), 577–599. https://doi.org/10.2475/ajs.s4-35.210.577.

4. Brückner R., 2003. Silicon dioxide. In: G.L. Trigg (Ed.), Encyclopedia of Applied Physics. Wiley, New York, p. 101–131. https://doi.org/10.1002/3527600434.eap432.

5. Condie K.C., 2016. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 418 p. https://doi.org/10.1016/C2015-0-00179-4.

6. Cranmer D., Uhlmann D.R., 1981. Viscosities in the system albite-anorthite. Journal of Geophysical Research: Solid Earth 86 (B9), 7951–7956. https://doi.org/10.1029/JB086iB09p07951.

7. Cross W., Iddings J.P., Pirsson L.V., Washington H.S., 1902. A quantitative chemicomineralogical classification and nomenclature of igneous rocks. Journal of Geology 10 (6), 555–690. https://doi.org/10.1086/621030.

8. Dawson J.B., 1980. Kimberlites and Their Xenoliths. Springer–Verlag, Berlin–Heidelberg, 252 p.

9. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., Vernikovsky V.A., Gladkov I.N., 2008. Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100 (1–4), 66–92. https://doi.org/10.1016/j.lithos.2007.06.025.

10. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2005. Parameters of hot spots and thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (6), 589–602.

11. Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 653 p. https://doi.org/10.1017/CBO9781139025300.

12. Fedortchouk Y., Matveev S., Carlson J.A., 2010. H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada. Earth and Planetary Science Letters 289 (3–4), 549–559. https://doi.org/10.1016/j.epsl.2009.11.049.

13. Frye K. (Ed.), 1983. The Encyclopedia of Mineralogy. Springer, Berlin, 794 p.

14. Gladkov I.N., Distanov V.E., Kirdyashkin A.A., Kirdyashkin A.G., 2012. Stability of a melt/solid interface with reference to a plume channel. Fluid Dynamics 47 (4), 433–447. https://doi.org/10.1134/S0015462812040023.

15. Gramenitsky E.N., Kotelnikov A.R., Batanova A.M., Shchekina T.I., Plechov P.Yu., 2000. Experimental and Technological Petrology. Nauchnyi Mir, Moscow, 416 p. (in Russian)

16. Huppert H.E., Sparks R.S.J., 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29 (3), 599–624, https://doi.org/10.1093/petrology/29.3.599.

17. Kerr A.C., Menzies M.A., 2012. Phanerozoic volcanism. In: D.G. Roberts, A.W. Bally (Eds.), Regional geology and tectonics: principles of geologic analysis. Vol. 1A. Elsevier, Amsterdam, p. 41–74.

18. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (9), 1005–1024.

19. Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N., 2016. Geodynamic regimes of thermochemical mantle plumes. Russian Geology and Geophysics 57 (6), 858–867. https://doi.org/10.1016/j.rgg.2016.05.003.

20. Kirdyashkin A.A., Kirdyashkin A.G., Gurov V.V., 2017. Parameters of thermochemical plumes responsible for the formation of batholiths: results of experimental simulation. Geotectonics 51 (4), 398–411. https://doi.org/10.1134/S0016852117040057. 1

21. Kirdyashkin A.G., Kirdyashkin A.A., 2018. Hydrodynamics and heat and mass transfer in mushroom-shaped heads of thermo-chemical plumes. Geodynamics & Tectonophysics 9 (1), 263–286 (in Russian) https://doi.org/10.5800/GT-2018-9-1-0348.

22. Kushiro I., Yoder H.S., Jr., 1966. Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalteclogite transformation. Journal of Petrology 7 (3), 337–362. https://doi.org/10.1093/petrology/7.3.337.

23. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A., 2010. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews 102 (1–2), 29–59. https://doi.org/10.1016/j.earscirev.2010.06.004.

24. Lindsley D.H., 1968. Melting relations of plagioclase at high pressures. In: Y.A. Isachsen (Ed.), Origin of anorthosite and related rocks. Memoir 18, New York State Museum and Science Service, Albany, New York, p. 39–46.

25. MacDougall J.D. (Ed.), 1988. Continental Flood Basalts. Springer, Dordrecht, 341 p. https://doi.org/10.1007/978-94-015-7805-9.

26. MacGregor I.D., 1965. Stability fields of spinel and garnet peridotites in the synthetic system MgO–CaO–Al2O3–SiO2. In: Carnegie Institution of Washington Yearbook, vol. 64, p. 126–134.

27. Marsh B.D., 1981. On the crystallinity, probability of occurrence and rheology of lava and magma. Contributions to Mineralogy and Petrology 78 (1), 85–98. https://doi.org/10.1007/BF00371146. 24

28. Nekrasov B.V., 1973. Fundamentals of General Chemistry. Vol. 1. Khimiya Publishing House, Leningrad, 656 p. (in Russian)

29. Pabst W., Gregorová E., 2013. Elastic properties of silica polymorphs – a review. Ceramics – Silikáty 57 (3), 167–184.

30. Persikov E.S., 1984. The Viscosity of Magmatic Melts. Nauka, Moscow, 160 p. (in Russian)

31. Schairer J.F., Yoder H.S., Jr., 1960. The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. American Journal of Science 258-A (Bradley Volume), 273–283.

32. Sobolev V.S., 1986. Petrology of Traps. Nauka, Novosibirsk, 209 p. (in Russian) [Соболев В.С. Петрология траппов. Новосибирск: Наука, 1986. 209 с.].

33. Surkov N.V., 1995. Experimental study of the stability and melting of bivariant assemblages in the forsterite-normative part of the system CaO–MgO–Al2O3-SiO2 in the context of the upper-mantle petrology. In: N.V. Sobolev (Ed.), Materials on genetic and experimental mineralogy. Vol. 11. Izd. SO RAN, NITs OIGGM SO RAN, Novosibirsk, p. 27–43. (in Russian)

34. Surkov N.V., Doroshev A.M., 1998. Phase diagram of the CaO–Al2O3–SiO2 system at pressures up to 40 kbar. Geologiya i Geofizika (Russian Geology and Geophysics) 39 (9), 1254–1268.

35. Surkov N.V., Gartvich Yu.G., 2012a. Physicochemical model for the crystallization of rocks of the calc–alkaline series. Geochemistry International 50 (10), 799–815. https://doi.org/10.1134/S0016702912100060.

36. Surkov N.V., Gartvich Yu.G., 2012b. Modeling of deep-seated high-alumina parageneses on the basis of the stability fields of corundum- and spinel-normative assemblages of the system CaO–MgO–Al2O3–SiO2. Russian Geology and Geophysics 53 (1), 51–61. https://doi.org/10.1016/j.rgg.2011.12.004.

37. Vertushkov G.N., Avdonin V.N., 1992. Tables for Mineral Determination Based on Chemical and Physical Properties: A Handbook. Nedra, Moscow, 489 p. (in Russian)

38. Voitkevich G.V., Kokin A.V., Miroshnikov A.E., Prokhorov V.G., 1990. Geochemistry Reference Book. Nedra, Moscow, 480 p. (in Russian) [Войткевич Г.В., Кокин А.В., Мирошников А.Е., Прохоров В.Г. Справочник по геохимии. М.: Недра, 1990. 480 с.].

39. Winter J.D., 2014. Principles of Igneous and Metamorphic Petrology. Harlow, Pearson, 739 p.

40. Wyllie P.J., Donaldson C.H., Irving A.J., Kesson S.E., Merrill R.B., Presnall D.C., Stolper E.M., Usselman T.M., Walker D., 1981. Experimental petrology of basalts and their source rocks. In: Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, p. 493–630.

41. Yoder H.S., Jr., 1976. Generation of Basaltic Magma. National Academy of Sciences, Washington, 265 p.

42. Yoder H.S., Jr., Tilley C.E., 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology 3 (3), 342–532. https://doi.org/10.1093/petrology/3.3.342


Review

For citations:


Kirdyashkin A.A., Kirdyashkin A.G., Surkov N.V. FEATURES OF MELTING IN THE THERMOCHEMICAL PLUME CONDUIT AND HEAT AND MASS TRANSFER DURING CRYSTALLIZATION DIFFERENTIATION OF BASALTIC MELT IN A MUSHROOM-SHAPED PLUME HEAD. Geodynamics & Tectonophysics. 2019;10(1):1-19. (In Russ.) https://doi.org/10.5800/GT-2019-10-1-0401

Views: 981


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)