A MODEL OF THE SELF-STRESS STATE OF THE SEDIMENTARY ROCK AND ITS APPLICATION TO ESTIMATION OF RESIDUAL EFFECTS
https://doi.org/10.5800/GT-2013-4-4-0111
Abstract
Based on analysis of modern concepts describing changes in the stress-and-strain state of rocks, it is revealed that the elastic energy is not fully released and residual/own stresses occur in core samples taken out of the rock massif.
The paper describes a model aimed at explanation of causes for residual stresses of the type. The model is composed of two elastic elements that are subject to different states of stresses; it shows major previous stages of formation of the initial state of gravity stresses of the detrital sedimentary rock which were followed by cementation and changes of the state of stresses during unloading. Being an element of the history, the sequence of formation of the rock under the ‘loading – cementing’ pattern leads to formation of two systems of stresses in the rock elements (according to K. Terzaghi), i.e. effective stresses in the rock matrix (or groundmass) that is subject to main loading, and neutral stresses in the connate fluid that is not involved in the process. Upon hardening of the solution, the effective stresses become bound by the cementing material.
Changes of the stress-and-strain state of the model in case of induced or natural unloading are analyzed on the basis of stress–strain curves that are reconstructed for the rock elements prior to unloading and compared in the same systems of coordinates, and the process of unloading is reviewed with account of the condition of their joint deformation. By applying the method of superposition of the two fields of stresses during unloading, it is possible to reveal the cause-and consequence relationship between the initial state of stresses and the occurrence of own stresses and, subsequently, to trace the self-stress state. The proposed definition ensures a ‘transparent’ representation of changes of stresses between the model’s elements during unloading, changes of the potential energy and distribution of its components after unloading, which provides an explanation of the incomplete release of the potential energy.
About the Author
A. I. MorozRussian Federation
Doctor of Technical Sciences, Deputy Head of Department
References
1. Aitmatov I.T., 2003. The role of residual stresses in rocks in the formation of the source of rock bursts and induced earthquakes. In: Geodynamics and geoenvironmental problems of high-mountain regions. Bishkek, Moscow, p. 209-221 (in Russian) [Айтматов И.Т. Роль остаточных напряжений в горных породах в формировании очага горных уда¬ров и техногенных землетрясений // Геодинамика и геоэкологические проблемы высокогорных регионов. М.: Бишкек, 2003. С. 209-221].
2. Aitmatov I.T., Kazakbaeva G.O., 2012. On the superposition of external and residual stresses in optically active materials. In: Tectonophysics and current issues of the Earth sciences: Proceedings of the conference held on October 8-12, 2012. IPE, Moscow, Vol. 1, p. 25-29 (in Russian) [Айтматов И.Т., Казакбаева Г.О. О суперпозиции полей внешних и остаточных напряжений в оптически активных материалах // Тектонофизика и актуальные вопросы наук о Земле: Материалы докладов конференции 8-12 октября 2012 г. М.: ИФЗ, 2012 . Т. 1. С. 25-29].
3. Boldyrev G.G., 2008. Methods for determination of mechanical properties of soils. State-of-the-Art. Penza State University of Architecture and Construction, Penza, 696 p. (in Russian) [Болдырев Г.Г. Методы определения механических свойств грунтов. Состояние вопроса. Пенза: ПГУАС, 2008. 696 с.].
4. Bradshaw M.J., 1977. A New Geology. Nedra, Leningrad, 279 p. (in Russian) [Брэдшоу М. Дж. Современная геология. Л.: Недра, 1977. 279 с.].
5. Bridgman P.W., 1955. The Study of Large Plastic Deformations and Rupture. Foreign Literature Publishing House, Moscow, 390 p. (in Russian) [Бриджмен П.В. Исследование больших пластических деформаций и разрыва. М.: Изд-во "Иностранная литература", 1955. 390 с.].
6. Gamsakhurdia G.R., 2000. The System of Geophysical and Petrophysical Studies of the Oceanic Crust by Deep-Water Scientific Drilling: Synopsis of PhD Thesis (doctor of technical sciences). Tver, 35 p. (in Russian) [Гамсахурдия Г.Р. Система геофизических и петрофизических исследований земной коры океанического типа при глубоководном научном бурении: Автореф. дис. д-ра техн. наук. Тверь, 2000. 35 с.].
7. Gersevanov N.M., Pol'shin D.E., 1948. The Soil Mechanics Theory and Its Practical Application. Stroyizdat, Moscow, 248 p. (in Russian) [Герсеванов Н.М., Польшин Д.Е. Теоретические основы механики грунтов и их практическое применение. М.: Стройиздат, 1948. 248 с.].
8. Goodman R.E., 1987. Introduction to Rock Mechanics. John Wiley & Sons, New York, 232 p.
9. Gorshkov G.P., Yakushova A.F., 1973. General Geology. Moscow State University Press, Moscow, 592 p. (in Russian) [Горшков Г.П., Якушова А.Ф. Общая геология. М.: МГУ, 1973. 592 с.].
10. Mitchell J.K., Soga K., 2005. Fundamentals of Soil Behavior. John Wiley & Sons, New Jersey, 577 p.
11. Moroz A.I., 2004. The Self-Stress State of Rocks. Moscow State Mining University Press, Moscow, 288 p. [Мороз А.И. Са-монапряженное состояние горных пород. М.: МГГУ, 2004. 288 с.].
12. Nadai A., 1954. Ductility and Fracture of Solids. Foreign Literature Publishing House, Moscow, 647 p. (in Russian) [На- даи А. Пластичность и разрушение твердых тел. М.: Изд-во "Иностранная литература", 1954. 647 с.].
13. Ponomarev V.S., 2008. Energy Saturation of Geological Medium. In: Proceedings of the Geological Institute of RAS. Nauka, Moscow, Vol. 582, 379 p. (in Russian) [Пономарев В.С. Энергонасыщенность геологической среды // Труды Геоло-гического института РАН. М.: Наука, 2008. Вып. 582. 379 с.].
14. Rebetsky Yu.L., 2008. Mechanism of generation of tectonic stresses in areas high vertical movements. Fizicheskaya Mezo- mekhanika (Physical Mesomechanics) 1 (11), 66-73 (in Russian) [Ребецкий Ю.Л. Механизм генерации тектонических напряжений в областях больших вертикальных движений // Физическая мезомеханика. 2008. Т. 1, № 11. С. 66-73].
15. Revuzhenko A.F., Lavrikov S.V., Klishin S.V., 2005. A structurally heterogeneous rock massif as a medium with internal energy sources and sinks. In: Proceedings of International Conference «Problems and prospects of development of mining sciences» (1-5 November 2004). Vol. 1: Geomechanics. Institute of Mining Science of SB RAS, Novosibirsk, p. 214-219 (in Russian) [Ревуженко А.Ф., Лавриков С.В., Клишин С.В. Структурно-неоднородный горный массив как среда с внутренними источниками и стоками энергии // Труды Международной конференции: «Проблемы и перспективы развития горных наук» (1-5 ноября 2004 г.) Т. 1: Геомеханика. Новосибирск: Институт горного дела СО РАН, 2005. С. 214-219].
16. Ruppeneyt K.V., 1954. Some Issues of Rock Mechanics. Ugletekhizdat, Moscow, 383 p. (in Russian) [Руппенейт К.В. Некоторые вопросы механики горных пород. М.: Углетехиздат, 1954. 383 с.].
17. Ruppeneyt K.V., Lieberman Yu.M., 1960. Introduction to Rock Mechanics. Gosgortekhizdat, Moscow, 356 p. (in Russian) [Руппенейт К.В., Либерман Ю.М. Введение в механику горных пород. М.: Госгортехиздат, 1960. 356 с.].
18. Stavrogin A.N., Shirkes O.A., 1986. Aftereffect in rocks caused by preexisting irreversible deformations. Journal of Mining Science 22 (4), 235-244. http://dx.doi.org/10.1007/BF02500847.
19. Terzaghi K., Peck R., 1958. Soil Mechanics in Engineering Practice. Gosstroyizdat, Moscow, 608 p. (in Russian) [Терца- ги К., Пек Р. Механика грунтов в инженерной практике. М.: Госстройиздат, 1958. 608 с.].
20. Timoshenko S.P., 1972. The Course of the Theory of Elasticity. Naukova Dumka, Kiev, 508 p. (in Russian) [Тимошенко С.П. Курс теории упругости. Киев: Наукова Думка, 1972. 508 с.].
21. Trofimov V.T., Korolev V.A., Voznesensky E.A., 2005. Soil Science. Moscow State University Press, Moscow, 1024 p. (in Russian) [Трофимов В.Т., Королев В.А., ВознесенскийЕ.А. Грунтоведение. М.: МГУ, 2005. 1024 с.].
22. Uskov V.A., 2000. Self-destruction of rocks around underground workings. Gornyi Zhurnal (Mining Journal) 10, 16 (in Rus-sian) [Усков В.А. Саморазрушение пород вокруг подземных выработок // Горный журнал. 2000. № 10. С. 16].
23. Vlokh N.P., Lipin Ya.I. Sashurin A.D., 1972. The study of residual stresses in hard rock. In: Modern problems of rock me-chanics. Nauka, Leningrad, p. 186-189 (in Russian) [Влох Н.П., Липин Я.И., Сашурин А.Д. Исследование остаточных напряжений в крепких горных породах // Современные проблемы механики горных пород. Л.: Наука, 1972. С. 186-189].
Review
For citations:
Moroz A.I. A MODEL OF THE SELF-STRESS STATE OF THE SEDIMENTARY ROCK AND ITS APPLICATION TO ESTIMATION OF RESIDUAL EFFECTS. Geodynamics & Tectonophysics. 2013;4(4):435-445. (In Russ.) https://doi.org/10.5800/GT-2013-4-4-0111