Preview

Geodynamics & Tectonophysics

Advanced search

THE STRUCTURE OF THE LITHOSPHERIC MANTLE OF THE SIBERAIN CRATON AND SEISMODYNAMICS OF DEFORMATION WAVES IN THE BAIKAL SEISMIC ZONE

https://doi.org/10.5800/GT-2013-4-4-0108

Abstract

 The evolution and specific features of seismogynamics of the Baikal zones are reviewed in the context of interactions between deep deformation waves and the regional structure of the lithospheric mantle. The study is based on a model of the mantle structure with reference to chemical compositions of mantle peridotites from ophiolotic series located in the south-western framing of the Siberian craton (Fig. 1). The chemical zonation of the lithospheric mantle at the regional scale is determined from results of analyses of the heterogeneity of compositions of peridotites (Fig. 2, Table 1) and variations of contents of whole rock major components, such as iron, magnesium and silica (Fig. 3). According to spatial variations of the compositions of peridotites, the mantle has the concentric zonal structure, and the content of SiO2 is regularly decreasing, while concentrations of FeO∑ and MgO are increasing towards the centre of such structure (Fig. 4). This structure belongs to the mantle of the Siberian craton, which deep edge extends beyond the surface contour of the craton and underlies the north-western segment of the Central Asian orogenic belt.

Results of the studies of peridotites of the Baikal region are consistent with modern concepts [Snyder, 2002; O’Reilly, Griffin, 2006; Chen et al., 2009] that suggest that large mantle lenses underlie the Archaean cratons (Fig. 5). The lenses are distinguished by high-density ultrabasic rocks and compose high-velocity roots of cratons which have remained isolated from technic processes. Edges of the mantle lenses may extend a few hundred kilometers beyond the limits of the cratons and underlie orogenic belts that frame the cratons, and this takes place in the south-western segment of the Siberian craton.

The revealed structure of the lithospheric mantle is consistent with independent results of seismic and magmatectonical studies of the region. The Angara geoblock is located above the central part of the mantle lense (Fig 6, A); it is one of four main tectonical units that compose the basement of the Siberian craton [Mironyuk, Zagruzina, 1983]. As evidenced by the zonal composition of the mantle lense, the centre of the lense is highly dense, and this explains the location of a seismic anomaly there (Fig. 6, B) which is determined to a depth of about 50–60 km [Pavlenkova G.A., Pavlenkova N.I., 2006]. The high-velocity root located in this segment of the craton is traced by seismic tomography [Koulakov, Bushenkova, 2010] to a depth of about 600 km (Fig. 7). The southward-stretching edge of the sub-cratonic mantle has played a major role in the evolution of the Central Asian orogenic belt. In the Paleozoic, the position and the configuration of the accretional margin of the Siberian paleocontinent were determined by the hidden boundary of the craton (Fig. 8, A). Along the craton’s boundary, rifting zones of various ages are located, and intrusions are concentrated, which genesis was related to extension settings (Fig. 8, B). The Cenozoic sedimentary basins are located above the hidden edge of the Siberian craton, which gives evidence of involvement of the deep lithospheric structure in the formation of the recent destruction zone. The basin of Lake Baikal is located along the mantle edge of the Siberian craton, and the basin’s crescent shape accentuates the strike of the mantle edge.

In the region under study, the wave nature of seismicity is most evidently manifested by the cyclicity of the strongest earthquakes in the Baikal zone (Table 2). Three seismic cycles are distinguished as follows: (1) at the turn of the 20th century (earthquakes in the period from 1885 to 1931, M=6.6–8.2), (2) the middle of the 20th century (earthquakes from 1950 to 1967, M=6.8–8.1), and (3) at the turn of the 21st century (earthquakes from 1991 to 2012, M=6.3–7.3). While moving in the mantle, the deformation front collapses with the craton’s basement, partially releases its energy to the lithosphere and involves the fragmented edge of the crust overlying the craton’s edge into deformation (Fig. 9, A). This interaction resulted in the formation of the Mongolia-Baikal and the Altai-Baikal seismic sutures whereat all the strong earthquake took place in seismic cycles (1) and (3), respectively (Fig. 9, B). The third, West Amur seismic suture framing the boundary of the Amur plate comprises locations of strong earthquakes that occurred in cycle (2) (Fig. 10). An important specific feature of the Baikal seismic zone is orthogonal migration of earthquakes within seismic sutures. In each of the sutures, epicenters of strong earthquakes (M>6.0) migrated in the transverse direction, which established the orientation of maximum compression during interaction of deformation waves with the mantle structures (Fig. 9, and 10). The less strong seismic events (М<6.0) (Fig. 11) migrated along the seismic sutures. At the western flank of the zone, in the Altai-Baikal and Mongolia-Baikal sutures, latitudinal migration took place in the direction from west to east with account of the trajectory of the deformation wave. In the northern part of the West Amur suture, latitudinal migration was directed from east to west, and its direction was gradually changed to meridional in the southern part, which reflected the anticlockwise rotation of the Amur plate. This conclusion can explain a paradox of counter migration of seismicity in the Baikal zone, which is revealed by S.I. Sherman [Sherman, Zlogodukhova, 2011].

In each of the three seismic/deformation sutures, stresses are released via orthogonal multi-directional migration of earthquakes (Fig. 12), and the sutures are regularly combined to compose a complex structure of the stress field in the Baikal seismic zone. Their positions predetermine locations of the major riftogenic structures, primarily sedimentary basins from Tunka to Ubsunur (Fig. 9, B). The three seismic sutures join and overlap each other in the area of Lake Baikal and thus set up the maximum intensity of deformation in this area. Apparently, each of the deformation sutures corresponds to one of the three basins of Lake Baikal (Fig. 13, A). Their depths are correlated with widths of the sutures, which is explained by ‘weakening’ of the deformation wave in the successive cycles of its interaction with the deep structure of the lithosphere. Seismicity of the Baikal zone and its Cenozoic rifting reflect the character of the stress field generated by interaction between the deep deformation wave and the organization of the lithospheric mantle.

 

 

About the Author

A. A. Stepashko
Kosygin Institute of Tectonics and Geophysics FEB RAS, Khabarovsk, Russia
Russian Federation


References

1. Ashchepkov I.V., 1991. Deep Xenoliths of the Baikal Rift. Nauka, Novosibirsk, 160 p. (in Russian) [Ащепков И.В. Глубин¬ные ксенолиты Байкальского рифта. Новосибирск: Наука, 1991. 160 с.].

2. Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina E.V., Alymova N.A., Kostrovitsky S.I., Rotman A.Y., Mityukhin S.I., Karpenko M.A., Stegnitsky Yu.B., Khmelnikova O.S., 2010. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectono¬physics 485 (1-4), 17-41. http://dx.doi.org/10.10167j.tecto.2009.11.013.

3. Barruol G., Deschamps A., Deverchere J., Mordvinova V.V., Ulziibat M., Perrot J., Artem'ev A.A., Dugarmaa T., Bokelmann G.H.R., 2008. Upper mantle flow beneath and around the Hangay dome, Central Mongolia. Earth and Planetary Science Letters 274 (1-2), 221-233. http://dx.doi.org/10.10167j.epsl.2008.07.027.

4. Bykov V.G., 2005. Strain waves in the Earth: theory, field data, and models. Russian Geology and Geophysics 46 (11), 1176-1190.

5. Chen C.-W., Rondenay S., Evans R.L., Snyder D.B., 2009. Geophysical detection of relict metasomatism from an archean (~3.5 Ga) subduction zone. Science 326 (5956), 1089-1091. http://dx.doi.org/10.1126/science.1178477.

6. Didenko A.N., Mossakovsky A.A., Pechersky D.M., Ruzhentsev S.V., Samygin S.G., Kheraskova T.N., 1994. Geodynamics of the Central-Asian paleozoic oceans. Geologiya i Geofizika (Russian Geology and Geophysics) 35 (7-8), 59-75 (in Rus¬sian) [Диденко А.Н., Моссаковский А.А., Печерский Д.М., Руженцев С.В., Самыгин С.Г., Хераскова Т.Н. Геодина¬мика палеозойских океанов Центральной Азии // Геология и геофизика. 1994. Т. 35. № 7-8. С. 59-75].

7. Egorkin A.V., 2004. Mantle structure of the Siberian platform. Izvestia, Physics of the Solid Earth 40 (5), 385-394.

8. Ferrini V., Sassano G., 1999. Nature, origin and age of diamonds: a state-of-the-art report. Periodico Di Mineralogia 68 (2), 109-126.

9. Gaul O.F., Griffin W.L., O'Reilly S.Y., Pearson N.J., 2000. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters 182 (3-4), 223-235. http://dx.doi.org/10.1016/S0012-821X(00)00243-0.

10. Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Izmer A., Vandorne W., Ryabinin A., Van der haute P., Vanhaecke F., Elburg M.A., 2011. Formation and Palaeozoic evolutin of the Gorny-Altai-Altai-Mongolia suture zone (South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Research 20 (2-3), 465-484. http://dx.doi.org/10.1016/j.gr. 2011.03.003.

11. Glukhovsky M.Z., 1990. Geological Evolution of Basements of Ancient Platforms (Nuclear Conception). Nauka, Moscow, 215 p. (in Russian) [Глуховский М.З. Геологическая эволюция фундаментов древних платформ (Нуклеарная кон¬цепция). М.: Наука, 1990. 215 с.].

12. Gossler J., Kind R., 1996. Seismic evidence for very deep roots of continents. Earth and Planetary Science Letters 138 (1-4), 1-13. http://dx.doi.org/10.1016/0012-821X(95)00215-X.

13. Griffin W.L., Doyle B.J., Ryan C.G., Pearson N.J., O'Reilly S.Y., Davies R.M., Kivi K., van Achterberg E., Natapov L.M., 1999. Layered mantle lithosphere in the Lac de Gras, Slave Craton: composition, structure and origin. Journal of Petrol¬ogy 40 (5), 705-727. http://dx.doi.org/10.1093/petroj/40.5.705.

14. Griffin W.L., O'Reilly S.Y., Afonso J.C., Begg G.C., 2009. The composition and evolution of lithospheric mantle: a re- evaluation and its tectonic implications. Journal of Petrology 50 (7), 1185-1204. http://dx.doi.org/10.1093/petrology/ egn033.

15. Gundmundsson O., Sambridge M., 1998. A regionalized upper mantle (RUM) seismic model. Journal of Geophysical Re¬search: Solid Earth 103 (B4), 7121-7136. http://dx.doi.org/10.1029/97JB02488.

16. Herzberg C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology 45 (12), 2507-2530. http://dx.doi. org/10.1093/petrology/egh039.

17. Ionov D.A., Hofmann A.W., 2007. Depth of formation of subcontinental off-craton peridotites. Earth and Planetary Science Letters 261 (3-47), 620-634. http://dx.doi.org/10.1016Zj.epsl.2007.07.036.

18. Ishikawa A., Maruyama S., Komiya T., 2004. Layered lithospheric mantle beneath the Ontong Java Plateau: Implications from xenoliths in Alnoite, Malaita, Solomon Islands. Journal of Petrology 45 (10), 2011-2044. http://dx.doi.org/10.1093/ petrology/egh046.

19. Ivanova T.P., Trifonov V.G., 2005. Neotectonics and mantle earthquakes in the Pamir-Hindu Kush Region. Geotectonics 39 (1), 56-68.

20. Jordan T.H., 1978. Composition and development of the continental tectosphere. Nature 274 (5671), 544-548. http://dx. doi.org/10.1038/274544a0.

21. Kiselev A.I., Medvedev M.E., Golovko G.A., 1979. Volcanism of the Baikal Rift Zone and Origination Problems of Deep Magma. Nauka, Novosibirsk, 197 p. (in Russian) [Киселев А.И., Медведев М.Е., Головко Г.А. Вулканизм Байкаль¬ской рифтовой зоны и проблемы глубинного магмообразования. Новосибирск: Наука, 1979. 197 с.].

22. Klyuchevskii A.V., Dem'yanovich V.M., 2009. Baikal rift zone: an area of higher energy of seismotectonic deformations in the lithosphere. Doklady Earth Sciences 429 (1), 1314-1317. http://dx.doi.org/10.1134/S1028334X09080169.

23. Kondorskaya N.V., Shebalin N.V., 1977. The New Catalog of Strong Earthquakes in the Territory of USSR from Ancient Times to 1975. Nauka, Moscow, 536 p. (in Russian) [Кондорская Н.В., Шебалин Н.В. Новый каталог сильных земле¬трясений на территории СССР c древнейших времен до 1975 г. М.: Наука, 1977. 536 с.].

24. Kontorovich A.E., Belyaev S.Yu., Kontorovich A.A., Starosel'tsev V.S., Mandel'baum M.M., Migurskii A.V., Moiseev S.A., Safronov A.F., Sitnikov V.S., Fliptsov Yu.A., Khomenko A.V., Eremin Yu.G., Bykova O.V., 2009. Tectonic map of the Vendian - Lower Paleozoic structural stage of the Lena - Tunguska petroleum province, Siberian Platform. Russian Geo¬logy and Geophysics 50 (8), 657-667. http://dx.doi.org/10.1016/j.rgg.2008.10.005.

25. Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on re¬gional tomographic inversion of P and PP travel times. Tectonophysics 486 (1-4), 81-100. http://dx.doi.org/10.1016/ j.tecto.2010.02.011.

26. Kuskov O.L., Kronrod V.A., Annersten H., 2006. Inferring upper-mantle temperatures from seismic and geochemical con¬straints: Implications for Kaapvaal craton. Earth and Planetary Science Letters 244 (1-2), 133-154. http://dx.doi.org/ 10.1016/j.epsl.2006.02.016.

27. Lapin B.N., 1997. Atlas of Structures of Alpine-Type Hyperbasites from Siberia and Far East. Publishing House of SB RAS, OIGGM, Novosibirsk, 331 p. (in Russian) [Лапин Б.Н. Атлас структур пород альпинотипных гипербазитов Сибири и Дальнего Востока. Новосибирск: Издательство СО РАН, НИЦ ОИГГМ, 1997. 331 с.].

28. Lee C.-T. A., Luffi P., Chin E.J., 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences 39, 59-90. http://dx.doi.org/10.1146/annurev-earth-040610-133505.

29. Lesnov F.P., 1986. Petrochemistry of Polygenic Basite-Hyperbasite Plutons from Folded Regions. Nauka, Novosibirsk, 136 p. (in Russian) [Леснов Ф.П. Петрохимия полигенных базит-гипербазитовых плутонов складчатых областей. Но-восибирск: Наука, 1986. 136 с.].

30. Logachev N.A., 2003. History and Geodynamics of the Baikal Rift. Russian Geology and Geophysics 5, 373-387.

31. Luguet A., Jaques A.L., Pearson D.G., Smith C.B., Bulanova G.P., Roffey S., Rayner M., Lorand J.P., 2009. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112 (2), 1096-1108. http://dx.doi.org/10.1016/j.lithos.2009. 05.022.

32. Lunina O.V., Gladkov A.S., 2004. Fault pattern and stress field in the western Tunka rift (southwestern flank of the Baikal rift system). Russian Geology and Geophysics 45 (10), 1188-1199.

33. Malamud A.S., Nikolaevsky V.N., 1983. Periodicity of the Pamir - Hindu Kush earthquakes and tectonics waves in subduct¬ing lithospheric plates. Doklady AN 269 (5), 1075-1078 (in Russian) [Маламуд А.С., Николаевский В.Н. Периодич¬ность Памиро-Гиндукушских землетрясений и тектонические волны в субдуктируемых литосферных плитах // Доклады АН. 1983. Т. 269. № 5. С. 1075-1078].

34. Malamud A.S., Nikolaevsky V.N., 1985. Cyclicity of seismotectonic events at the edges of the Indian lithospheric plate. Dok¬lady AN 282 (6), 1333-1337 (in Russian) [Маламуд А.С., Николаевский В.Н. Цикличность сейсмотектонических со¬

35. бытий на краях Индийской литосферной плиты // Доклады АН СССР. 1985. Т. 282. № 6. C. 1333-1337].

36. McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chemical Geology 120 (3-4), 223-253. http://dx.doi.org/ 10.1016/0009-2541(94)00140-4.

37. Menzies A.N., Shirey S.B., Carlson R.W., Gurney J.J., 1998. Re-Os isotope systematics of diamond bearing eclogites and peridotites from Newlands kimberlite. In: J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.H. Richardson (Eds.), Extended Ab-stracts 7th International Kimberlite Conference. Red Roof Design, Cape Town, p. 579-581.

38. Mironyuk E.P., Zagruzina I.A., 1983. Geoblocks of Siberia and stages of their formation. In: Tectonics of Siberia. The Struc¬ture of the Earth's Crust in the Eastern Region of the USSR in the Light of Modern Tectonic Concepts. Nauka, Novosibirsk, V. XI, p. 133-140 (in Russian) [Миронюк Е.П., Загрузина И.А. Геоблоки Сибири и этапы их формиро¬вания // Тектоника Сибири. Строение земной коры востока СССР в свете современных тектонических концеп¬ций. Новосибирск: Наука, 1983. Т. XI. С. 133-140].

39. Mitrofanov G.L., Taskin A.P., 1994. Structural relationships of the Siberian platform with the folded framing. Geotektonika (Geotectonics) 1, 3-15 (in Russian) [Митрофанов Г.Л., Таскин А.П. Структурные соотношения Сибирской платформы со складчатым окружением // Геотектоника. 1994. № 1. С. 3-15].

40. Molnar P., Tapponnier P., 1975. Cenozoic tectonic of Asia: Effects of continental collision. Science 189 (4201), 419-426. http://dx.doi.org/10.1126/science.189.4201.419.

41. National Earthquake Information Center - NEIC, 2013. Available from: http://earthquake.usgs.gov/regional/neic/ (last accessed 29.10.2013).

42. O'Reilly S.Y., Griffin W.L., 2006. Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics 416 (1-4), 289-309. http://dx.doi.org/10. 1016/j.tecto.2005.11.014.

43. Parfeevets A.V., San'kov V.A., Miroshnichenko A.I., Lukhnev A.V., 2002. The evolution of the state of stresses of the Earth's crust of the Mongol-Baikal mobile belt // Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 21 (1), 14¬28 (in Russian) [Парфеевец А.В., Саньков В.А., Мирошниченко А.И., Лухнев А.В. Эволюция напряженного состоя¬ния земной коры Монголо-Байкальского подвижного пояса // Тихоокеанская геология. 2002. Т. 21. № 1. С. 14-28].

44. Patel S.C., Ravi S., Anilkumar Y., Pati J.K., 2010. Major element composition of concentrate garnets in Proterozoic kimber- lites from the Eastern Dharwar Craton, India: Implications on sub-continental lithospheric mantle. Journal of Asian Earth Sciences 39 (6), 578-588. http://dx.doi.org/10.1016/j.jseaes.2010.04.020.

45. Pavlenkova G.A., Pavlenkova N.I., 2006. Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data. Tectonophysics 416 (1-4), 33-52. http://dx.doi.org/10.1016/j.tecto.2005.11.010.

46. Pavlenkova N.I., 2011. Seismic structure of the upper mantle along the long-range PNE profiles - rheological implication. Tectonophysics 508 (1-4), 85-95. http://dx.doi.org/10.1016/j.tecto.2010.11.007.

47. Pearson D.G., 1999. The age of continental roots. Lithos 48 (1-4), 171-194. http://dx.doi.org/10.1016/S0024-4937(99) 00026-2.

48. Pearson D.G., Shirey S.B., Bulanova G.P., Carlson R.W., Milledge H.J., 1999. Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochimica et Cosmochimica Acta 63 (5), 703-711. http://dx.doi.org/10.1016/S0016-7037(99)00042-3.

49. Pearson D.G., Wittig N., 2008. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. Journal of the Geological Society 165 (5), 895-914. http://dx.doi.org/10.1144/0016-76492008-003.

50. Pechersky D.M., Didenko A.N., 1995. Paleo-Asian Ocean: Petromagnetic and Paleomagnetic Information about Its Litho¬sphere. Publishing House of OIFZ RAN, Moscow, 298 p. (in Russian) [Печерский Д.М., Диденко А.Н. Палеоазиатский океан: петромагнитная и палеомагнитная информация о его литосфере. М.: ОИФЗ РАН, 1995. 298 с.].

51. Peltonen P., Brugmann G., 2006. Origin of layered continental mantle (Karelian craton, Finland): Geochemical and Re-Os isotope constraints. Lithos 89 (3-4), 405-423. http://dx.doi.org/10.1016/j.lithos.2005.12.013.

52. Polet J., Anderson D.L., 1995. Depth extent of cratons as inferred from tomographic studies. Geology 23 (3), 205-208. http:// dx.doi.org/10.1130/0091-7613(1995)023<0205:DEOCAI>2.3.CO;2.

53. Rudnick R.L., Walker R.J., 2009. Interpreting ages from Re-Os isotopes in peridotites. Lithos 112 (2), 1083-1095. http://dx. doi.org/10.1016/j.lithos.2009.04.042.

54. Rundquist D.V., Sobolev P.O., Ryakhovskii V.M., 1999. Reflection of different fracture types in the seismicity of the Baikal Rift Zone. Doklady Earth Sciences 367 (5), 708-710.

55. Rytsk E.Yu., Shalaev V.S., Rizvanova N.G., Krymskii R.Sh., Makeev A.F., Rile G.V., 2002. The Olokit zone of the Baikal fold region: new isotope-geochronological and petrochemical data. Geotectonics 36 (1), 24-35.

56. San'kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia - Siberian Mobile Region. Geotectonics 45 (5), 378-393. http://dx.doi.org/10.1134/S0016852111050049.

57. Sand K.K., Waight T.E., Pearson D.G., Nielsen T.F.D., Makovicky E., Hutchison M.T., 2009. The lithospheric mantle below southern west Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos 112 (2),

58. -1166. http://dx.doi.Org/10.1016/j.lithos.2009.05.012.

59. Savage M.K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting. Reviews of Geophysics 37 (1), 65-106. http://dx.doi.org/10.1029/98RG02075.

60. Schulze D.J., Canil D., Channer D.M.D., Kaminsky F.V., 2006. Layered mantle structure beneath the western Guyana Shield, Venezuela: Evidence from diamonds and xenocrysts in Guaniamo kimberlites. Geochemica et Cosmochimica Acta 70 (1), 192-205. http://dx.doi.org/10.1016Zj.gca.2005.08.025.

61. §engor A.M.C., Natal'in B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: A.Yin, M. Harrison (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, p. 486-640.

62. Sherman S.I., 2009. A tectonophysical model of a seismic zone: experience of development based on the example of the Bai¬kal rift system. Izvestia, Physics of the Solid Earth 45 (11), 938-951. http://dx.doi.org/10.1134/S1069351309110020.

63. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental litho- sphere. Geodynamics & Tectonophysics 4 (2), 83-117. http://dx.doi.org/10.5800/GT-2013-4-2-0093.

64. Sherman S.I., Gorbunova E.A., 2010. New data on the regularities of the earthquake manifestation in the Baikal seismic zone and their forecast. Doklady Earth Sciences 435 (2), 1659-1664. http://dx.doi.org/10.1134/S1028334X10120238.

65. Sherman S.I., Levi K.G., 1978. Transform faults of the Baikal rift zone and seismicity of its flanks. In: Tectonics and seis- misity of the continental rift zones. Nauka, Moscow, p. 7-18 (in Russian) [Шерман С.И., Леви К.Г. Трансформные разломы Байкальской рифтовой зоны и сейсмичность ее флангов // Тектоника и сейсмичность континентальных рифтовых зон. М.: Наука, 1978. С. 7-18].

66. Sherman S.I., Zlogodukhova O.G., 2011. Seismic belts and zones of the Earth: formalization of notions, positions in the litho- sphere, and structural control. Geodynamics & Tectonophysics 2 (1), 1-34. http://dx.doi.org/10.5800/GT-2011-2-1-0031.

67. Silver P.G., Chan W.W., 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Re¬search: Solid Earth 96 (B10), 16429-16454. http://dx.doi.org/10.1029/91JB00899.

68. Snyder D.B., 2002. Lithospheric growth at margins of cratons. Tectonophysics 355 (1-4), 7-22. http://dx.doi.org/10.1016/ S0040-1951(02)00131-2.

69. Stepashko A.A., 1998. The Chemical Structure of Ultrabasic Mantle. Dalnauka, Vladivostok, 128 p. (in Russian) [Степашко А.А. Химическая структура ультраосновной мантии. Владивосток: Дальнаука, 1998. 128 с.].

70. Stepashko A.A., 2001. The upper mantle structure and geodynamics of the Siberian plate. In: Tectonics, deep structure and geodynamics of the Eastern Asia: The 3rd conference in memory of Yu.A. Kosygin. Publishing House of ITIG FEB RUS, Khabarovsk, p. 53-62 (in Russian) [Степашко А.А. Структура верхней мантии и геодинамика Сибирской платформы // Тектоника, глубинное строение и геодинамика востока Азии: III Косыгинские чтения. Хабаровск: ИТиГ им. Ю.А. Косыгина ДВО РАН, 2001. С. 53-62].

71. Stepashko A.A., 2010. Deep roots of seismotectonics in the Far East: The Sakhalin zone. Russian Journal of Pacific Geology 4 (3), 228-241. http://dx.doi.org/10.1134/S181971401003005X.

72. Stepashko A.A., 2011a. Deep roots of seismotectonics of the Far East: The Amur River and Primorye zones. Russian Journal of Pacific Geology 5 (1), 1-12. http://dx.doi.org/10.1134/S1819714011010076.

73. Stepashko A.A., 2011b. Seismodynamics and deep internal origin of the North China zone of strong earthquakes. Geodyna¬mics & Tectonophysics 2 (4), 341-355. http://dx.doi.org/10.5800/GT-2011-2-4-0049.

74. Stone R., 2008. An unpredictably violent fault. Science 320 (5883), 1578-1580. http://dx.doi.org/10.1126/science.320. 5883.1578.

75. Surkov V.S., Korobeinikov V.P., Krylov S.V., Grishin M.P., Kraevsky B.G., Larichev A.I., 1996. Geodynamic and depositional conditions of the Riphean petroleum complex formation at the western margin of the Siberian Paleocontinent. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (8), 154-166 (in Russian) [Сурков В.С., Коробейников В.П., Крылов С.В., Гришин М.П., Краевский Б.Г., Ларичев А.И. Геодинамические и седиментационные условия формирования рифейских нефтегазоносных комплексов на западной окраине Сибирского палеоконтинента // Геология и геофи¬зика. 1996. Т. 37. № 8. С. 154-166].

76. Ulomov V.I., 1993. Waves of seismogeodynamic activation and long-term prediction of earthquakes. Fizika Zemli (Physics of the Solid Earth) (4), 43-53 (in Russian) [Уломов В.И. Волны сейсмогеодинамической активизации и долгосрочный прогноз землетрясений // Физика Земли. 1993. № 4. C. 43-53].

77. Velinsky V.V., Vartanova N.S., 1980. Chemical patterns of the Tuva ultrabasic rocks. In: Petrology of ultrabasic and basic rocks from Siberia and the Far East of Russia and Mongolia. Nauka, Novosibirsk, p. 14-27 (in Russian) [Велинский В.В., Вартанова Н.С. Закономерности в химизме гипербазитов Тувы // Петрология гипербазитов и базитов Сибири, Дальнего Востока и Монголии. Новосибирск: Наука, 1980. С. 14-27].

78. Vernikovsky V.A., Vernikovskaya A.E., Nozhkin A.D., Ponomarchuk V.A., 1994. The Riphean ophiolites of the Isakovka belt (Yenisei Ridge). Geologiya i Geofizika (Russian Geology and Geophysics) 35 (7-8), 169-181 (in Russian) [Верников- ский В.А., Верниковская А.Е., Ножкин А.Д., Пономарчук В.А. Рифейские офиолиты Исаковского пояса (Енисей¬ский кряж) // Геология и геофизика. 1994. Т. 35. № 7-8. С. 169-181].

79. Vikulin A.V., Bykov V.G., Luneva M.N., 2000. Nonlinear deformation waves in a rotational model of a seismic process. Com-putational technologies 5 (1), 31-39.

80. innik L.P., Makeyeva L.I., Milev A., Usenko A.Yu., 1992. Global pattern of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International 111 (3), 433-447. http://dx.doi.org/10.1111/j.1365-246X.1992.

81. tb02102.x.

82. Vladimirov B.M., Volyanyuk N.Ya., Ponomarenko A.I., 1976. Deep Xenoliths from Kimberlites, Basalts and Kimberlite-like Rocks. Nauka, Moscow, 284 p. (in Russian) [Владимиров Б.М., Волянюк Н.Я., Пономаренко А.И. Глубинные вклю¬чения из кимберлитов, базальтов и кимберлитоподобных пород. М.: Наука, 1976. 284 с.].

83. Wittig N., Pearson D.G., Webb M., Ottley C.J., Irvine G.J., Kopylova M., Jensen S.M., Nowell G.M., 2008. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth and Planetary Science Letters 274 (1-2), 24-33. http://dx.doi.org/10.1016/j.epsl.2008.06.034.

84. Wittlinger G., Farra V., 2007. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth and Planetary Science Letters 254 (3-4), 404-415. http://dx.doi.org/10.1016/j.epsl.2006.11.048.

85. Xiao W., Huang B., Han C., Sun S., Li J., 2010. A review of the western part of the Altaids: A key to understanding the archi-tecture of accretionary orogens. Gondwana Research 18 (2-3), 253-273. http://dx.doi.org/10.1016Zj.gr.2010.01.007.

86. Xu X., Griffin W.L., O'Reilly S.Y., Pearson N.J., Geng H., Zheng J., 2008. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos 102 (1-2), 43-64. http://dx.doi.org/10.1016/ j.lithos.2007.06.010.

87. Yarmolyuk V.V., Kovalenko V.I., Kotov A.B., Sal'nikova E.V., 1997. The Angara-Vitim Batholith: On the problem of batho- lith geodynamics in the Central Asia Foldbelt. Geotectonics 31 (5), 359-373.

88. Yuan H., Romanowicz B., 2010. Lithospheric layering in the North American craton. Nature 466 (7310), 1063-1068. http:// dx.doi.org/10.1038/nature09332.

89. Zoback M.D., 2010. Earthquakes: Climate and intraplate shocks. Nature 466 (7306), 568-569. http://dx.doi.org/10.1038/ 466568a.

90. Zonenshain L.P., Savostin V.G., 1979. Introduction to Geodynamics. Nedra, Moscow, 311 p. (in Russian) [Зоненшайн Л.П., Савостин Л.А. Введение в геодинамику. М.: Недра, 1979. 311 с.].

91. Zorin Yu. A. Turutanov E.Kh., 2005. Plumes and geodynamics of the Baikal rift zone. Russian Geology and Geophysics 46 (7), 669-682.


Review

For citations:


Stepashko A.A. THE STRUCTURE OF THE LITHOSPHERIC MANTLE OF THE SIBERAIN CRATON AND SEISMODYNAMICS OF DEFORMATION WAVES IN THE BAIKAL SEISMIC ZONE. Geodynamics & Tectonophysics. 2013;4(4):387-415. (In Russ.) https://doi.org/10.5800/GT-2013-4-4-0108

Views: 1520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)