Geoelectrical images of normal fault zones: tectonophysical interpretation of the shallow-depth electrical resistivity tomography data on the Buguldeika-Chernorud graben in the Western Baikal region
https://doi.org/10.5800/GT-2018-9-4-0399
Abstract
In the study of normal fault zones located in the central Baikal rift, a new approach was applied to process and interpret the shallow-depth electrical resistivity tomography data. This approach is based on the concepts of tectonophysics and considers three-stage formation of a fault and the corresponding three degrees of rock material disturbance, which are regularly detected in the rock mass. The degrees are established by statistical analysis of specific electrical resistance (SER) measured from the electrical resistivity tomography profile across the faults under study. Based on a geoelectrical profile, it is possible to identify the sites wherein the disturbed rocks show the indicators of the early, late and final stages of faulting. The profile provides the basis for specifying the boundaries of the fault zone and the main features of its internal structure. The tectonophysical approach was applied to study a series of normal fault zones varying in ranks. The zones are located on the sides of the Buguldeika-Chernorud graben located near the Olkhon Island in the Western Baikal region. By comparing the geoelectrical profiles constructed under the same methodology, it was established that the near-fault anomalies of electrical resistance are qualitatively similar. Their structure is defined by the general mechanism of normal faulting in the upper crust during sliding along a curved (listric) fault plane. The research results are consolidated in an idealized geoelectrical model: a 2D profile showing a low-resistance anomaly that corresponds to a normal fault zone. This anomaly is asymmetrical and mushroom-shaped, and its internal structure is heterogeneous. In the lying wing of the fault, the anomaly reflects the fan-shaped set of secondary faults caused by the subvertical movements in the normal fault zone, which surface is steeply inclined to the horizon. In the hanging wing, the structure of the anomaly reflects a system of lens-like grabens that form above the surface of the main fault plane that becomes less inclined with depth. The structure of the geoelectrical model proposed for the Olkhon region follows the general regularities controlling formation of listric-shaped normal fault zones. This model can be widely used for diagnostics of tectonic settings and crustal extension structures in other regions.
About the Authors
K. Zh. SeminskyRussian Federation
Konstantin Zh. Seminsky - Doctor of Geology and Mineralogy, Deputy Director.
128 Lermontovstreet, Irkutsk 664033
A. A. Bobrov
Russian Federation
Alexander A. Bobrov - Candidate of Geology and Mineralogy, Researcher.
128 Lermontov street, Irkutsk 664033
References
1. Al-Zubedi A.S., Thabit J.M., AL-Hameedawi M.M., 2015. Delineation of subsurface fractures density within and out of Abu-Jir Fault zone using 2D imaging resistivity technique, a case study from southwest of Karbala City, Central Iraq. Iraqi Journal of Science 56 (1B), 466–473.
2. Bense V.F., Gleeson T., Loveless S.E., Bour O., Scibek J., 2013. Fault zone hydrogeology. Earth-Science Reviews 127, 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008.
3. Berg S.S., Skar T., 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology 27 (10), 1803–1822.
4. Bhat G.R., Balaji S., Bali B.S., Iqbal V., Hussain H., 2018. Paleoseismological investigations along Joggers Park Fault, Port Blair, South Andaman: Implications towards delineation of blind thrusting and related crustal deformation through ground penetrating radar (GPR) and electrical resistivity techniques (ERT and VES). Journal of the Geological Society of India 91 (1), 81–90. https://doi.org/10.1007/s12594-018-0823-z.
5. Bokun A.N., 1985. Development and character of fractures in the models of flexure-shape bending. In: I.V. Luchitsky, P.M. Bondarenko (Eds.), Experimental tectonics in theoretical and applied geology. Nauka, Moscow, p. 230–237 (in Russian)
6. Burg J.P., 2018. Script to Tectonics. Lectures 650-3521-00L and 650-3521-00V. ETH Zurich.
7. Burzunova Yu.P., 2014. Joint systems in rocks of active tectonic regions: irregularity degree estimation. Bulletin of Irkutsk State Technical University (4), 45–49 (in Russian)
8. Caine J.S., Evans J.P., Forster C.B., 1996. Fault zone architecture and permeability structure. Geology 24 (11), 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2.
9. Cheremnykh А.V., 2010. Internal structures of fault zones in the Priolkhonie and evolution of the state of stresses of the upper crust of the Baikal rift. Geodynamics & Tectonophysics 1 (3), 273–284 (in Russian) https://doi.org/10.5800/GT-2010-1-3-0021.
10. Chester F.M., Evans J.P., Biegel R.L., 1993. Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research: Solid Earth 98 (B1), 771–786. https://doi.org/10.1029/92JB01866.
11. Choi J.H., Edwards P., Ko K., Kim Y.S., 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006.
12. Clausen J.A., Gabrielsen R.H., Johnsen E., Korstgård J.A., 2003. Fault architecture and clay smear distribution. Examples from field studies and drained ring-shear experiments. Norwegian Journal of Geology/Norsk Geologisk Forening 83 (2), 131–146.
13. Delvaux D., Moyes R., Stapel G., Melnikov A., Ermikov V., 1995. Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics 252 (1–4), 61–101. https://doi.org/10.1016/0040-1951(95)00090-9.
14. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnichenko А., Ruzhich V., San'kov V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282 (1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.
15. Demanet D., Renardy F., Vanneste K., Jongmans D., Camelbeeck T., Meghraoui M., 2001. The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66 (1), 78–89. https://doi.org/10.1190/1.1444925.
16. Dombrovskaya Zh.V., 1973. Paleogene Weathering Crust of Central Pribaikalie. Nauka, Moscow, 153 p. (in Russian)
17. Drahor M.G., Berge M.A., 2017. Integrated geophysical investigations in a fault zone located on southwestern part of İzmir city, Western Anatolia, Turkey. Journal of Applied Geophysics 136, 114–133. https://doi.org/10.1016/j.jappgeo.2016.10.021.
18. Faulkner D.R., Jackson C.A.L., Lunn R.J., Schlische R.W., Shipton Z.K., Wibberley C.A.J., Withjack M.O., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology 32 (11), 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009.
19. Fazzito S.Y., Rapalini A.E., Cortés J.M., Terrizzano C.M., 2009. Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina. Journal of South American Earth Sciences 28 (3), 217–228. https://doi.org/10.1016/j.jsames.2009.06.001.
20. Fedorovsky V.S., 1997. Dome tectonics in the Caledonian collision system of Western Cisbaikalia. Geotectonics 31 (6), 483–497.
21. Fischer T., Štěpančíková P., Karousová M., Tábořík P., Flechsig C., Gaballah M., 2012. Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography. Studia Geophysica et Geodaetica 56 (4), 1019–1036. https://doi.org/10.1007/s11200-012-0825-z.
22. Galli P.A.C., Giocoli A., Peronace E., Piscitelli S., Quadrio B., Bellanova J., 2014. Integrated near surface geophysics across the active Mount Marzano Fault System (southern Italy): seismogenic hints. International Journal of Earth Sciences 103 (1), 315–325. https://doi.org/10.1007/s00531-013-0944-y.
23. Grigoriev A.S., Volovich I.M., Mikhailova A.V., Rebetsky Yu.L., Shakhmuradova Z.E., 1987. Investigation of the stress state, kinematics and development of discontinuities of the sedimentary cover over the active faults of the basement (using a combination of mathematical and physical modeling in the conditions of plane deformation). In: Yu.D. Bulanzhe (Ed.), Stress and strain fields in the Earth crust. Nauka, Moscow, p. 5–31 (in Russian)
24. Jeanne P., Guglielmi Y., Cappa F., 2012. Multiscale seismic signature of a small fault zone in a carbonate reservoir: Relationships between VP imaging, fault zone architecture and cohesion. Tectonophysics 554–557, 185–201. https://doi.org/10.1016/j.tecto.2012.05.012.
25. Jones G., Knipe R.J., 1996. Seismic attribute maps; application to structural interpretation and fault seal analysis in the North Sea basin. First Break 14 (12), 449–461. https://doi.org/10.3997/1365-2397.1996024.
26. Komolafe A.A., Kuria Z.N., Woldai T., Noomen M., Anifowose A.Y.B., 2012. Integrated remote sensing and geophysical investigations of the geodynamic activities at Lake Magadi, Southern Kenyan rift. International Journal of Geophysics 2012, Article ID 318301. https://doi.org/10.1155/2012/318301.
27. Kozhevnikov N.O., 2015. Regional structure of the Olkhon region according to the data of electromagnetic sounding and the electric-field method. Interexpo Geo-Siberia 2 (2), 107–112 (in Russian)
28. Kukley L.N., 1985. Precambrian of Western Pribaikalie. IPE RAS, Moscow, 189 p. (in Russian)
29. Levi К.G., Arzhannikova А.V., Buddo V.Yu., Kirillov P.G., Lukhnev А.V., Miroshnichenko А.I., Ruzhitch V.V., San'kov V.А., 1997. Recent geodynamics of the Baikal rift. Razvedka i okhrana nedr (1), 10–20 (in Russian)
30. Logachev N.A., 2003. History and geodynamics of the Baikal rift. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (5), 391–406.
31. Loke M.H., 2010. Tutorial: RES2DINV ver. 3.59, Rapid 2-D Resistivity & IP inversion using the least-squares method. Geotomo Software, Malaysia, 148 p.
32. Mats V.D., 1993. The structure and development of the Baikal rift depression. Earth-Science Reviews 34 (2), 81–118. https://doi.org/10.1016/0012-8252(93)90028-6.
33. Mats V.D., Ufimtsev G.F., Mandel’baum M.M., Alakshin A.M., Pospeev A.V., Shimaraev M.N., Khlystov O.M., 2001. The Baikal Basin in the Cenozoic: Structure and Geologic History. Siberian Branch of RAS Publishing House, Filial “Geo”, Novosibirsk, 252 p. (in Russian)
34. Mitchell T.M., Faulkner D.R., 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology 31 (8), 802–816. https://doi.org/10.1016/j.jsg.2009.05.002.
35. Moisidi M., Vallianatos F., Soupios P., Kershaw S., 2012. Spatial spectral variations of microtremors and electrical resistivity tomography surveys for fault determination in southwestern Crete, Greece. Journal of Geophysics and Engineering 9 (3), 261–270. https://doi.org/10.1088/1742-2132/9/3/261.
36. Negri S., Leucci G., 2006. Geophysical investigation of the temple of Apollo (Hierapolis, Turkey). Journal of Archaeological Science 33 (11), 1505–1513. https://doi.org/10.1016/j.jas.2006.02.003.
37. Palacky G.J., 1989. Resistivity characteristics of geologic targets. In: M.N. Nabighian (Ed.), Electromagnetic methods in applied geophysics. Vol. 1. Theory. Society of Exploration Geophysicists, Tulsa, Oklahoma, р. 52–129. https://doi.org/10.1190/1.9781560802631.ch3.
38. Patton T.L., Logan J.M., Friedman M., 1998. Experimentally generated normal faults in single-layer and multilayer limestone specimens at confining pressure. Tectonophysics 295 (1–2), 53–77. https://doi.org/10.1016/S0040-1951(98)00115-2.
39. Pavlov S.F. (Ed.), 1979. Ratio of Ancient and Cenozoic Structures in the Baikal Rift Zone. Nauka, Novosibirsk, 126 p. (in Russian)
40. Pedrera A., Marín-Lechado C., Stich D., Ruiz-Constán A., Galindo-Zaldívar J., Rey-Moral C., de Lis Mancilla F., 2012. Nucleation, linkage and active propagation of a segmented Quaternary normal-dextral fault: the Loma del Viento fault (Campo de Dalías, Eastern Betic Cordillera, SE Spain). Tectonophysics 522–523, 208–217. https://doi.org/10.1016/j.tecto.2011.12.001.
41. Pleshanov S.P., Romazina A.A., 1981. Some problems of kinematics of faulting in the central Baikal rift. In: N.A. Logachev, S.I. Sherman (Eds.), Problems of fault tectonics. Nauka, Novosibirsk, p. 129–141 (in Russian)
42. Putiška R., Dostál I., Mojzeš A., Gajdoš V., Rozimant K., Vojtko R., 2012. The resistivity image of the Muráň fault zone (Central Western Carpathians) obtained by electrical resistivity tomography. Geologica Carpathica 63 (3), 233–239. https://doi.org/10.2478/v10096-012-0017-3.
43. Schueller S., Braathen A., Fossen H., Tveranger J., 2013. Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data. Journal of Structural Geology 52, 148–162. https://doi.org/10.1016/j.jsg.2013.03.013.
44. Schütze C., Vienken T., Werban U., Dietrich P., Finizola A., Leven C., 2012. Joint application of geophysical methods and Direct Push-soil gas surveys for the improved delineation of buried fault zones. Journal of Applied Geophysics 82, 129–136. https://doi.org/10.1016/j.jappgeo.2012.03.002.
45. Seminsky K.Zh., 2014. Specialized mapping of crustal fault zones. Part 1: Basic theoretical concepts and principles. Geodynamics & Tectonophysics 5 (2), 445–467 (in Russian) https://doi.org/10.5800/GT-2014-5-2-0136.
46. Seminsky K.Zh., 2015. Specialized mapping of crustal fault zones. Part 2: Main stages and prospects. Geodynamics & Tectonophysics 6 (1), 1–43 (in Russian) https://doi.org/10.5800/GT-2015-6-1-0170.
47. Seminsky K.Zh., Bobrov A.A., 2012. Spatial and temporal variations of soil-radon activity in fault zones of the Pribaikalie (East Siberia, Russia). In: Z. Li, C. Feng (Eds.), Handbook of radon: properties, applications and health. Chapter 1. Nova Science Publishers, Inc., New York, 1–36.
48. Seminsky K.Zh., Bobrov A.A., Demberel S., 2014. Variations in radon activity in the crustal fault zones: Spatial characteristics. Izvestiya, Physics of the Solid Earth 50 (6), 795–813. https://doi.org/10.1134/S1069351314060081.
49. Seminsky K.Zh., Demberel S., 2013. The first estimations of soil-radon activity near faults in Central Mongolia. Radiation Measurements 49, 19–34. https://doi.org/10.1016/j.radmeas.2012.12.013.
50. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Bobrov А.А., Olenchenko V.V., Avgulevich D.L., 2008. Structure of the fault zones in Priol’khonie (Baikal rift) as derived from tectonophysical and geophysical surveys. Proceedings of the Siberian Department of the Section of Earth Sciences of the Russian Academy of Natural Sciences. Geology, Exploration and Development of Mineral Deposits (7), 111–124 (in Russian)
51. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A.S., 2013. Interblock zones in the crust of the southern regions of East Siberia: tectonophysical interpretation of geological and geophysical data. Geodynamics & Tectonophysics 4 (3), 203–278 (in Russian) https://doi.org/10.5800/GT-2013-4-3-0099.
52. Seminsky K.Zh., Zaripov R.M., Olenchenko V.V., 2016. Interpretation of shallow electrical resistivity images of faults: tectonophysical approach. Russian Geology and Geophysics 57 (9), 1349–1358. https://doi.org/10.1016/j.rgg.2016.08.020.
53. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Siberian Branch, Nauka, Novosibirsk, 102 p. (in Russian)
54. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Buddo V.Yu., 1994. Faulting in the Lithosphere. Compresson Zones. Nauka, Siberian Branch, Novosibirsk, 263 p. (in Russian)
55. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Lobatskaya R.M., Lysak S.V., Levi K.G., 1992. Faulting in the Lithosphere. Extension Zones. Nauka, Novosibirsk, 262 p. (in Russian)
56. Sklyarov E.V. (Ed.), 2005. Structural and Tectonic Correlation Across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. IEC SB RAS, Irkutsk, 291 p.
57. Štěpančíková P., Hók J., Nývlt D., Dohnal J., Sýkorová I., Stemberk J., 2010. Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics 485 (1–4), 269–282. https://doi.org/10.1016/j.tecto.2010.01.004.
58. Thinova L., Fronka A., Rovenska K., 2011. A pilot study of the dependence of radon concentration on the tectonic structures, using simple geophysical methods. Radiation Protection Dosimetry 145 (2–3), 159–165. https://doi.org/10.1093/rpd/ncr070.
59. Vanneste K., Verbeeck K., Petermans T., 2008. Pseudo-3D imaging of a low-slip-rate, active normal fault using shallow geophysical methods: The Geleen fault in the Belgian Maas River valley. Geophysics 73 (1), B1–B9. https://doi.org/10.1190/1.2816428.
60. Zaripov R.M., 2013. Features of using electrical resistivity tomography in the study of fault zones in the Olkhon region (Western Baikal region). In: Trofimuk Seminar – 2013. IPGG, Novosibirsk, p. 271–274 (in Russian)
61. Zarroca M., Linares R., Bach J., Roqué C., Moreno V., Font L., Baixeras C., 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain). Environmental Earth Sciences 67 (3), 889–910. https://doi.org/10.1007/s12665-012-1537-y.
62. Zhu T., Zhou J., Wang H., 2017. Localization and characterization of the Zhangdian-Renhe fault zone in Zibo city, Shandong province, China, using electrical resistivity tomography (ERT). Journal of Applied Geophysics 136, 343–352. https://doi.org/10.1016/j.jappgeo.2016.11.016.
Review
For citations:
Seminsky K.Zh., Bobrov A.A. Geoelectrical images of normal fault zones: tectonophysical interpretation of the shallow-depth electrical resistivity tomography data on the Buguldeika-Chernorud graben in the Western Baikal region. Geodynamics & Tectonophysics. 2018;9(4):1339-1361. (In Russ.) https://doi.org/10.5800/GT-2018-9-4-0399