Preview

Geodynamics & Tectonophysics

Advanced search

Hydrogeology and hydrogeochemistry of the Zaeltsovsko-Mochishchensky zone of radon waters in the southern West Siberia

https://doi.org/10.5800/GT-2018-9-4-0394

Abstract

The study aims at solving the fundamental and applied problems of hydrogeology and hydrogeochemistry of the Zaeltsovsko-Mochishchensky zone of radon waters in the northwestern district of the city of Novosibirsk. Novosibirsk is one of the few Russian cities built on granites that emit radon (222Rn). In geological terms, the study area is confined to the NW near-contact zone of the large Novosibirsk granitoid massif. The available data on radon in this area has not been scientifically consolidated yet. We used the methods of S.L. Shvartsev, N.M. Kruglikov, V.V. Nelyubin, O.N. Yakovlev, and V.M. Matusevich and software packages Visual Minteq, PhreeqC, WATEQ4f and HG-32 and obtained physical and chemical calculations for the forms of migration of trace elements in radon waters and estimated the degrees of radon water saturation with rock-forming minerals. The data from hydrogeological profiles and hydrogeochemical sampling (118 samples from 57 water wells and sources) were analyzed. Radon waters are fissure-type, cold (6–10 °С) and occur at a depth of 50–200 m. By their chemical composition (according to the classification proposed by S.А. Shchukarev), the waters are mainly hydro-carbonate calcium and hydro-carbonate calcium-sodium; the total mineralization amounts to 322–895 mg/dm3. All the water wells drilled in granites and near-contact hornfels were tested for radon. It is revealed that the 222Rn concentration in water varies widely, from 11 to 801 Bq/dm3. Therefore, such waters are classified as low-radon and moderate-radon mineral waters (according to the classification proposed by N.I. Tolstikhin). In the wells drilled in hornfels, the 222Rn concentration in water is 37–241 Bq/dm3. The concentrations of 238U and 226Ra do not exceed 0.098 and 1.9∙10–9 mg/dm3, respectively. Physicochemical simulation shows that Ag+, Ba2+, Zn2+, Ni2+, Mn2+, Sr2+, Fe2+ migrate mainly as free ions, while Be2+, Fe3+, Zr4+, Ti4+ migrate as hydroxide complexes. Uranium is mainly present in uranyl-carbonate complexes of calcium: Ca2UO2(CO3)3(aq) (61–75 %) and CaUO2(CO3)32– (25–36 %). Calculations show abundant saturation of the waters with calcite, dolomite, ferrihydrite, greenalite, hausmannite, manganite, quartz, rutile, siderite, lepidocrocite, goethite, and pyrolusite. The mineral phases, such as aragonite, barite, chalcedony, cristobalite, vaterite, and amorphous silicon dioxide are in equilibrium. Several samples show saturation of the waters with relatively rare phosphorus-containing minerals: hydroxyapatite, manganese hydrogen phosphate, cerargyrite, and lead molybdate. The radon waters are not saturated with monohydrocalcite, calcium molybdate, celestite, chrysotile, copper hydroxide, copper molybdate, epsomite, huntite, amorphous and crystalline iron hydroxide (II), gypsum, iron molybdate (II), magnesite, lansfordite, Na-jarosite, nesquehonite, powellite, strontianite, tenorite, witherite, and zirconium dioxide.

About the Authors

D. A. Novikov
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Dmitry A. Novikov - Candidate of Geology and Mineralogy, Head of Laboratory

A.A. Trofimuk IPGG, SB RAS.

3 Academician Koptug ave., Novosibirsk 630090; 2 Pirogov street, Novosibirsk 630090



A. F. Sukhorukova
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Anna F. Sukhorukova - Candidate of Geology and Mineralogy, Researcher

A.A. Trofimuk IPGG, SB RAS.

3 Academician Koptug ave., Novosibirsk 630090; 2 Pirogov street, Novosibirsk 630090



T. V. Korneeva
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS
Russian Federation

Tatiana V. Korneeva - Candidate of Geology and Mineralogy, Researcher.

3 Academician Koptug ave., Novosibirsk 630090



References

1. Allocca V., Coda S., De Vita P., Di Rienzo B., Ferrara L., Giarra A., Mangoni O., Stellato L., Trifuoggi M., Arienzo M., 2018. Hydrogeological and hydrogeochemical study of a volcanic-sedimentary coastal aquifer in the archaeological site of Cumae (Phlegraean Fields, southern Italy). Journal of Geochemical Exploration 185, 105–115. https://doi.org/10.1016/j.gexplo.2017.11.004.

2. Alonso H., Cruz-Fuentes T., Rubiano J.G., González-Guerra J., Cabrera M.C., Arnedo M. A., Tejera A., Rodríguez-Gonzalez A., Pérez-Torrado F.J., Martel P., 2015. Radon in Groundwater of the Northeastern Gran Canaria Aquifer. Water 7 (6), 2575–2590. https://doi.org/10.3390/w7062575.

3. Babin G.A., Fedoseev G.S., Borisenko A.S., Zhigalov S.V., Vetrov E.V., 2014. New data on the granite complexes of the Novosibirsk Priobye (West Siberia). In: Granites and the evolution of the Earth: granites and continental crust. Second International Geological Conference (17–20 August 2014, Novosibirsk). Publishing House of SB RAS, Novosibirsk, p. 28–30 (in Russian)

4. Baryshnikov G.Ya., Eliseev V.A., 2009. Thermal therapeutic waters of the siliceous composition in the Altai-Sayan mountainous country. Bulletin of Altai State University (3), 41–47 (in Russian)

5. Beitollahi M., Ghiassi-Nejad M., Esmaeli A., Dunker R., 2007. Radiological studies in the hot spring region of Mahallat, central Iran. Radiation Protection Dosimetry 123 (4), 505–508. https://doi.org/10.1093/rpd/ncl524.

6. Belshterli M.K., 1933. Granites of Novosibirsk. Proceedings of the Petrographic Institute of the USSR Academy of Sciences 3, 13–19 (in Russian)

7. Bertolo A., Bigliotto C., 2004. Radon concentration in waters of geothermal Euganean basin-Veneto, Italy. Radiation Protection Dosimetry 111 (4), 355–358. https://doi.org/10.1093/rpd/nch053.

8. Böhm C., 2002. Radon in Wasser‒Uberblick für den Kanton Graubünden. Jahresbericht Naturforschende Gesellschaft Graubünden 111, 49–79. https://doi.org/10.5169/seals-594820.

9. Bulatov A.A., Kopylova Yu.G., Dzhabarova N.K., Rychkova K.M., Arakchaa K.D., Khvaschevskaya A.A., Guseva N.V., Pasha-gin A.V., 2013. New information on the composition of radon waters (Shivelig field). Resort Base and Natural Health-Improving Areas of Tuva and Adjacent Regions (1), 154–161 (in Russian)

10. Chaudhuri H., Nisith K.D., Bhandari R.K., Sen P., Sinh B., 2010. Radon activity measurements around Bakreswar thermal springs. Radiation Measurements 45 (1), 143–146. https://doi.org/10.1016/j.radmeas.2009.11.039.

11. Didenko P.I., 2011. Radon in groundwaters of Ukraine. Technogenic-Ecological Safety and Civilian Defense (3), 123–128 (in Russian)

12. Distanov E.G., Borisenko A.S., Obolensky A.A., Sotnikov V.I., Lebedev V.I., 2006. Metallogeny of the polyaccretionary Altai-Sayan orogenic area. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (12), 1257–1276.

13. Dolgushin A.P., Tsaruk I.I., 2015. Uranium-ore potential of the Central Siberian region. Razvedka i Okhrana Nedr (Exploration and Protection of Mineral Resources) (10), 28–34 (in Russian)

14. Duenas C., Fernandez M.C., Enrı́quez C., Carretero J., Liger E., 1998. Natural radioactivity levels in Andalusian spas. Water Research 32 (8), 2271–2278. https://doi.org/10.1016/S0043-1354(97)00472-7.

15. Eliseev V.A., 2010. Radon nitrogen-thermal waters of Altai. Problems of Balneology, Physiotherapy and Therapeutic Physical Culture (5), 38–40 (in Russian)

16. Erőss A., Mádl-Szőnyi J., Surbeck H., Horváth Á., Goldscheider N., Csoma A.É., 2012. Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. Journal of Hydrology 426–427, 124–137. https://doi.org/10.1016/j.jhydrol.2012.01.031.

17. Fedoseev G.S., Sotnikov V.I., Ponomarchuk V.A., 2001. Permo-Triassic granitoid and basaltoid magmatism of the Kolyvan-Tomsk folded zone (Western Altai-Sayan foldbelt). In: N.L. Dobretsov, B. Jahn, A.G. Vladimirov (Eds.), Continental growth in the Phanerozoic: Evidence from Central Asia. Abstracts of the Third Workshop of IGCP-420. Geo, Novosibirsk, p. 42–44.

18. Gavrilkina S.V., 2016. Radon waters of the Ilmensky ridge. Top Problems of Humanitarian and Natural Sciences (8–1), 55–57 (in Russian)

19. Gurler O., Akar U., Kahraman A., Yalcin S., Kaynak G., Gundogdu O., 2010. Measurements of radon levels in thermal waters of Bursa, Turkey. Fresenius Environmental Bulletin 19 (12a), 3013–3017.

20. Gusev A.I., 1934. Geological Structure and Mineral Resources of the Novosibirsk Region. Publishing House of the West Siberian Geology-Hydro-Geodesy Trust, Tomsk, 101 p. (in Russian)

21. Gusev V.K., Verigo E.K., 1984. Radon waters of the Kolyvan-Tomsk folded zone, their use and protection. In: Changes of natural conditions under the influence of human activities. Nauka, Novosibirsk, p. 99–107 (in Russian)

22. Hoehn E., von Gunten H.R., 1989. Radon in groundwater: a tool to assess infiltration from surface waters to aquifers. Water Resources Research 25 (8). 1795–1803. https://doi.org/10.1029/WR025i008p01795.

23. Kalinin Yu.A., Kanygin A.V., Korobeinikov V.P., Krasnov V.I., Martynov V.A., Nesterenko G.V., Osintsev S.R., Peregoedov L.G., Roslyakov N.A., Sviridov V.G., Serdyuk Z.Ya., Smirnov L.V., Surkov V.S., Khomichev V.L., 1999. Geological Structure and Mineral Resources of West Siberia. Vol. I. Geological Structure. Publishing House of SB RAS, SRC UIGGM, Novosibirsk, 228 p. (in Russian)

24. Kamenova-Totzeva R.M., Kotova R.M., Tenev J.G., Totzev A.V., Badulin V.M., 2015. Natural radioactivity content in Bulgarian drinking waters and consequent dose estimation. Radiation Protection Dosimetry 164 (3), 402–407. https://doi.org/10.1093/rpd/ncu290.

25. Kies A., Hengesch O., Tosheva Z., Nawrot A.P., Jania J., 2015. Overview on radon measurements in Arctic glacier waters. The Cryosphere Discussion 9, 2013–2052. https://doi.org/10.5194/tcd-9-2013-2015.

26. Kokh A.A., Novikov D.A., 2014. Hydrodynamic conditions and vertical hydrogeochemical zonality of groundwater in the Western Khatanga Artesian Basin. Water Resources 41 (4), 396–405. https://doi.org/10.1134/S0097807814040083.

27. Korneeva T.V., Novikov D.A., 2018. Mechanisms of accumulation of trace elements in the radon waters of the Zaeltsovsky field (southern West Siberia). In: Groundwaters of the eastern regions of Russia. Materials of the All-Russia conference on groundwaters of the eastern regions of Russia (XXII Meeting on groundwaters of Siberia and the Far East, with international participation) (18–22 June 2018, Novosibirsk). Publishing Center of Novosibirsk State University, Novosibirsk, p. 270–276 (in Russian)

28. Kozlov A.M., 1971. Petrogeochemical Features of Late Hercynian granitoids of Novosibirsk Priobye and Massifs of the Kalbinsky complex of Gorny Altai. Author's Abstract of PhD Thesis (Candidate of Geology and Mineralogy). Tomsk, 19 p. (in Russian)

29. Kuzmin A.M., Parshin P.N., 1976. On the geostructural position of the Ob granitoid massif. Bulletin of Tomsk Polytechnic Institute 289, 51–58 (in Russian)

30. Matveev A.V., Starodubova A.P., Kudelsky A.V., Aizberg R.E., Naidenkov I.V., Karabanov A.K., Kapora M.S., 1996. Radon in natural and man-made complexes of Belarus. Lithosphere (Belarus) (5), 151–161 (in Russian)

31. Matveevskaya A.L., 1969. Hercynian Troughs of the Ob-Zaisan Geosynclinal System and Its Periphery. Nauka, Moscow, 286 p. (in Russian)

32. Mineeva L.A., Arakchaa K.D., Kyzyl O.M., 2016. Physicochemical characteristics of the Shumak and Choigan mineral water deposits. Bulletin of Irkutsk State University. Earth Sciences Series 17, 115–134 (in Russian)

33. Moiseenko F.S., Puchkov E.P., Borozdin Yu.G., 1966. On the morphology of granite massifs of Novosibirsk Priobye according to geophysical data. Geologiya i Geofizika (Soviet Geology and Geophysics) 7 (5), 130–137 (in Russian)

34. Nebera T.S., 2010. Typomorphism of Rock-Forming Minerals as an Indicator of the Evolution of the Melt and the Physicochemical Conditions for Formation of Granitoids in the Kolyvan-Tomsk Folded Zone. Author's Abstract of PhD Thesis (Candidate of Geology and Mineralogy). Tomsk State University, Tomsk, 21 p. (in Russian)

35. Novikov D.A., 2005. Geological and hydrogeological conditions of the Paleozoic basement of the Novoportovsky oil-gas-condensate field. Izvestia Vuzov (Bulletin of Universities). Oil and Gas (5), 14–20 (in Russian)

36. Novikov D.A., 2017a. Hydrogeological conditions for the presence of oil and gas in the western segment of the Yenisei-Khatanga regional trough. Geodynamics & Tectonophysics 8 (4), 881–901 (in Russian) https://doi.org/10.5800/GT-2017-8-4-0322.

37. Novikov D.A., 2017b. Hydrogeochemistry of the Arctic areas of Siberian petroleum basins. Petroleum Exploration and Development 44 (5), 780–788. https://doi.org/10.1016/S1876-3804(17)30088-5.

38. Novikov D.A., 2018. Oil and gas fields exploration in the Jurassic-Cretaceous deposits of Yamal Peninsula based on the water–gas equilibrium. Neftyanoye Khozyaistvo (Oil Industry) (4), 16–21 (in Russian) https://doi.org/10.24887/0028-2448-2018-4-16-21.

39. Novikov D.A., Sukhorukova A.F., 2015. Hydrogeology of the northwestern margin of the West Siberian Artesian Basin. Arabian Journal of Geosciences 8 (10), 8703–8719. https://doi.org/10.1007/s12517-015-1832-5.

40. Nuvarieva Yu.A., 1968. On the facies of the depth and metallogenic features of the granitoid massifs of the Kolyvan-Tomsk folded zone. In: Proceedings of SNIIGGiMs. New data on magmatism and ore-bearing potential of the Altai-Sayan folded region. Series: Regularities of locations and occurrence of minerals. Issue 70. Novosibirsk, p. 155–159 (in Russian)

41. Posokhov E.V., Tolstikhin N.I., 1977. Mineral Waters (Medical, Industrial, and Energy Waters). Nedra, Leningrad, 240 p. (in Russian)

42. Roslyakov N.A., Shcherbakov Yu.G., Alabin L.V., Nesterenko G.V., Kalinin A.Yu., Roslyakova N.V., Vasiliev I.P., Nevol’ko A.I., Osintsev S.R., 2001. Minerageny of the Junction of the Salair and Kolyvan-Tomsk Folded Zone. Geo Branch, Publishing House of SB RAS, Novosibirsk, 243 p. (in Russian)

43. Roslyakov N.A., Zhmodik S.M., Pakhomov V.G., 2013. Natural radionuclides in the geological medium of the Novosibirsk region. In: Radioactivity and radioactive elements in the human environment. Proceedings of the IV International conference (4–8 June 2013, Tomsk). Publishing House of Tomsk Polytechnic University, Tomsk, p. 461–464 (in Russian)

44. Santos T.O., Bonotto D.M., 2014. 222Rn, 226Ra and hydrochemistry in the Bauru Aquifer System, São José do Rio Preto (SP), Brazil. Applied Radiation and Isotopes 86, 109–117. https://doi.org/10.1016/j.apradiso.2013.12.003.

45. Sotnikov V.I., Fedoseev G.S., Kungurtsev L.V., Borisenko A.S., Obolensky A.A., Vasiliev I.P., Gimon V.O., 1999. Geodynamics, Magmatism and Metallogeny of the Kolyvan-Tomsk Folded Zone. Publishing House of SB RAS, SRC UIGGM, Novosibirsk, 227 p. (in Russian)

46. Sotnikov V.I., Fedoseev G.S., Ponomarchuk V.A., Borisenko A.S., Berzina A.N., 2000. Granitoid complexes of the Kolyvan'-Tomsk folded zone (West Siberia). Geologiya i Geofizika (Russian Geology and Geophysics) 41 (1), 120–125.

47. Sukhorukova A.F., Novikov D.A., 2018. Hydrogeology of Zaeltsovsko-Mochishchensky zone of radon waters (Novosibirsk). In: Groundwaters of the eastern regions of Russia. Materials of the All-Russia conference on groundwaters of the eastern regions of Russia (XXII Meeting on groundwaters of Siberia and the Far East, with international participation) (18–22 June 2018, Novosibirsk). Publishing Center of Novosibirsk State University, Novosibirsk, p. 473–480 (in Russian)

48. Surkov V.S., Trofimuk A.A., Zhero O.G., Smirnov L.V., Kontorovich A.E., Kanareikin B.A., Karus E.V., Kovylin V.M., Kramnik V.N., Rudnitsky A.L., Strakhov A.N., Egorkin A.V., Chernyshov N.M., 1986. Megacomplexes and Deep Structure of the Earth's Crust of the West Siberian Plate. Nedra, Moscow, 149 p. (in Russian)

49. Telahigue T., Agoubi B., Souid F., Kharroubi A., 2018. Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia. Journal of Environmental Radioactivity 182, 74–84. https://doi.org/10.1016/j.jenvrad.2017.11.025.

50. Tsaruk I.I., Dundukov N.N., 2015. Main stage of creation of the mineral resource base of uranium in Russia and the neighbouring countries. Razvedka i Okhrana Nedr (Exploration and Protection of Mineral Resources) (10), 3–17 (in Russian)

51. Varkasin Yu.N., Sviridov V.G., Roslyakov N.A., Afanasiev A.T., Vavilikhin G.A., Vasiliev I.P., Vinichenko V.I., Leonov A.N., Marus A.I., Mikhantieva L.S., Nesterenko G.V., Samsonov G.L., Serdyuk Z.Ya.,1998. Geological Structure and Mineral Resources of West Siberia. V. II. Minerals. Publishing House of SB RAS, SRC UIGGM, Novosibirsk, 254 p. (in Russian)

52. Verigo E.K., Bykov V.V., Gusev V.K., 1979. Zaeltsovskoe deposit of radon waters (Novosibirsk Priobye). In: G.A. Selyatitsky (Ed.), New data on geology and mineral resources of West Siberia. Issue 14. Publishing House of Tomsk University, Tomsk, p. 47–51 (in Russian)

53. Vladimirov A.G., Babin G.A., Fedoseev G.S., Kruk N.N., 2001. Novosibirsk district. In: Geology, magmatism and metamorphism of western part of Altai-Sayan fold region: field excursion guide of the IGCP-420. Geo, Novosibirsk, p. 26–38.

54. Voronov A.N., 2004. Radon-rich waters in Russia. Environmental Geology 46 (5), 630–634. https://doi.org/10.1007/s00254-003-0857-3.

55. Yafasov A.Ya., Yafasov A.A., 2003. Radon fields in the territory of Central Asia. ANRI (3), 13–17 (in Russian)


Review

For citations:


Novikov D.A., Sukhorukova A.F., Korneeva T.V. Hydrogeology and hydrogeochemistry of the Zaeltsovsko-Mochishchensky zone of radon waters in the southern West Siberia. Geodynamics & Tectonophysics. 2018;9(4):1255-1274. (In Russ.) https://doi.org/10.5800/GT-2018-9-4-0394

Views: 1514


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)