Preview

Geodynamics & Tectonophysics

Advanced search

Correlation between lithospheric magnetic anomalies and tectonic structures in the Norwegian-Greenland region of the Arctic

https://doi.org/10.5800/GT-2018-9-4-0388

Abstract

The studies of the deep structure and tectonics of the Arctic are important for solving the fundamental problems of modern geodynamics and developing its natural resources. This region is also of interest from the geopolitical point of view, in particular, considering the boundaries of the marginal seas. Our study aims to investigate the lithospheric (anomalous) geomagnetic field in the Norwegian-Greenland region of the Arctic and to correlate the identified anomalies with tectonic structures located in the region under study. The database includes the CHAMP satellite measurements of the modulus of the total geomagnetic field vector (the satellite operated at the altitude of ~280 km). This article describes the satellite data processing method applied to distinguish between the lithospheric part and other components of the geomagnetic field. Map showing the total vector modulus of the lithospheric field has been constructed for the studied area. The article discusses the possible nature of the lithospheric magnetic anomalies and their relation to the processes that occur under the territory of Greenland. According to our interpretation of the maps, the geomagnetic field anomalies are related to the modern large-scale geological and tectonic structures located in the studied area. The obtained results can facilitate further comprehensive geological and geophysical studies and contribute to modeling of the evolution of the lithosphere.

About the Authors

D. Yu. Abramova
N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS
Russian Federation

Daria Yu. Abramova - Candidate of Physics and Mathematics, Senior Researcher.

4 KaluzhskoeHighway, Moscow, Troitsk 108840


L. M. Abramova
Geoelectromagnetic Research Center of O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

Ludmila M. Abramova - Candidate of Physics and Mathematics, Lead Researcher.

4 Kaluzhskoe Highway, Moscow, Troitsk 108840


S. V. Filippov
N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS
Russian Federation

Sergei V. Filippov - Candidate of Physics and Mathematics, Head of Laboratory.

4 Kaluzhskoe Highway, Moscow, Troitsk 108840



References

1. Abramova D.Yu., Abramova L.M., 2014. Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite). Russian Geology and Geophysics 55 (7), 854–863. https://doi.org/10.1016/j.rgg.2014.06.005.

2. Abramova D.Yu., Abramova L.M., Filippov S.V., Frunze A.Kh., 2011. On the prospects of using satellite measurements for the analysis of regional magnetic anomalies. Issledovaniya Zemli iz Kosmosa (6), 53–63 (in Russian)

3. Abramova D.Yu., Abramova L.M., Varentsov I.M., Filippov S.V., 2017. Analysis of anomalies in the lithospheric magnetic field in the framework of the geological-geophysical study of the crust-mantle structures in the Carpathian-Balkan region. Geofizika (Geophysics) (2), 71–78 (in Russian)

4. Abramova D.Yu., Filippov S.V., Abramova L.M., Varentsov Iv.M., 2014. Lithospheric magnetic anomalies in the Balkan region. Bulgarian Geophysical Journal 40, 50–64.

5. Abramova D.Yu., Filippov S.V., Abramova L.M., Varentsov Iv.M., Lozovskii I.N., 2016. Changes of lithospheric magnetic anomalies with altitude (according to the CHAMP satellite). Geomagnetism and Aeronomy 56 (2), 239–248. https://doi.org/10.1134/S001679321602002X.

6. Abramova D.Yu., Philippov S.V., Abramova L.M., 2009. The long wavelenght magnetic anomalies over the territory of Russia from CHAMP satellite measurements. Geofizicheskiye Issledovaniya (Geophysical Research) 10 (4), 48–63 (in Russian)

7. Allen R., Nolet G., Morgan W., Vogfjord K., Nettles M., Ekstrom G., Bergsson B., Erlendsson P., Foulger G., Jakobsdottir S., Julian B., Pritchard M., Ragnarsson S., Stefansson R., 2002. Plume-driven plumbing and crustal formation in Iceland. Journal of Geophysical Research: Solid Earth 107 (B8), 2163. https://doi.org/10.1029/2001JB000584.

8. Alley R.B., Andrews J.T., Brigham-Grette J., Clarke G.K.C., Cuffey K.M., Fitzpatrick J.J., Funder S., Marshall S.J., Miller G.H., Mitrovica J.X., Muhs D.R., Otto-Bliesner B.L., Polyak L., White J.W.C., 2010. History of the Greenland ice sheet: paleoclimatic insights. Quaternary Science Reviews 29 (15–16), 1728–1756. https://doi.org/10.1016/j.quascirev.2010.02.007.

9. Alvey A., Gaina C., Kusznir N.J., Torsvik T.H., 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 27 (3–4), 310–321. https://doi.org/10.1016/j.epsl.2008.07.036.

10. Arkani-Hamed J., Strangway D.W., 1986. Effective magnetic susceptibility anomalies of the oceanic upper mantle derived from Magsat data. Geophysical Research Letters 13 (10), 999–1002. https://doi.org/10.1029/GL013i010p00999.

11. Artemieva I.M., Mooney W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research: Solid Earth 106 (B8), 16387–16414. https://doi.org/10.1029/2000JB900439.

12. Artemieva I.M., Thybo H., 2013. EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics 609, 97–153. https://doi.org/10.1016/j.tecto.2013.08.004.

13. Bijwaard H., Spakman W., 1999. Tomographic evidence for a whole-mantle plume below Iceland. Earth and Planetary Science Letters 166 (3–4), 121–126. https://doi.org/10.1016/S0012-821X(99)00004-7.

14. Blokh Yu.I., 2009. Interpretation of Gravitational and Magnetic Anomalies. Manual. Moscow State Geological Prospecting Academy, Moscow, 232 p. (in Russian)

15. Buryanov V.B., Gordienko V.V., Kulik S.N., Logvinov I.M., 1983. Comprehensive Geophysical Study of the Continental Tectonosphere. Naukova Dumka, Kiev, 176 p. (in Russian)

16. Dahl-Jensen T., Larsen T.B., Woelbern I., Bach T., Hanka W., Kind R., Gregersen S., Mosegaard K., Voss P., Gudmundsson O., 2003. Depth to Moho in Greenland: Receiver-function analysis suggests two Proterozoic blocks in Greenland. Earth and Planetary Science Letters 205 (3–4), 379–393. https://doi.org/10.1016/S0012-821X(02)01080-4.

17. Enhanced Magnetic Model 2017, 2017. Available from: https://www.ngdc.noaa.gov/geomag/EMM/.

18. Fahnestock M., Abdalati W., Joughin I., Brozena J., Gogineni P., 2001. High geothermal heat flow, basal melt, and origin of rapid ice flow in Central Greenland. Science 294 (5550), 2338–2342. https://doi.org/10.1126/science.1065370.

19. Finlay C.C., Olsen N., Kotsiaros S., Gillet N., Tøffner-Clausen L., 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth, Planets and Space 68 (1), 112. https://doi.org/10.1186/s40623-016-0486-1.

20. Gaina C., Medvedev S., Torsvik T.H., Koulakov I., Werner S.C., 2014. 4D Arctic: A glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys in Geophysics 35 (5), 1095–1122. https://doi.org/10.1007/s10712-013-9254-y.

21. Gao G., Kang G., Li G., Bai C., Wu Y., 2017. An analysis of crustal magnetic anomaly and Curie surface in west Himalayan syntaxis and adjacent area. Acta Geodaetica et Geophysica 52 (3), 407–420. https://doi.org/10.1007/s40328-016-0179-z.

22. Golovkov V.P., Zvereva T.I., Chernova T.A., 2007. Space-time modeling of the main magnetic field by combined methods of spherical harmonic analysis and natural orthogonal components. Geomagnetism and Aeronomy 47 (2), 256–262. https://doi.org/10.1134/S0016793207020156.

23. Golovkov V.P., Zvereva T.I., Chernova T.A., 2009. Construction of the spatial–temporal model of the main geomagnetic field using satellite data. Geomagnetism and Aeronomy 49 (1), 124–132. https://doi.org/10.1134/S0016793209010174.

24. Hemant K., Maus S., 2005. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique. Journal of Geophysical Research: Solid Earth 110 (B12), B12103. https://doi.org/10.1029/2005JB003837.

25. Henriksen N., 2008. Geological history of Greenland: Four Billion Years of Earth Evolution. Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 272 p.

26. Hjartarson Á., Erlendsson Ö., Blischke A., 2017. The Greenland–Iceland–Faroe Ridge Complex. In: G. Péron-Pinvidic, J.R. Hopper, T. Funck, M.S. Stoker, C. Gaina, J.C. Doornenbal, U.E. Árting (Eds.), The NE Atlantic Region: a reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. Geological Society, London, Special Publications, vol. 447, p. 127–148. https://doi.org/10.1144/SP447.14.

27. Jakovlev A.V., Bushenkova N.A., Koulakov I.Yu., Dobretsov N.L., 2012. Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography. Russian Geology and Geophysics 53 (10), 963–971. https://doi.org/10.1016/j.rgg.2012.08.001.

28. Kontorovich A.E., Epov M.I., Burshtein L.M., Kaminskii V.D., Kurchikov A.R., Malyshev N.A., Prischepa O.M., Safronov A.F., Stupakova A.V., Suprunenko O.I., 2010. Geology and hydrocarbon resources of the continental shelf in Russian Arctic seas and the prospects of their development. Russian Geology and Geophysics 51 (1), 3–11. https://doi.org/10.1016/j.rgg.2009.12.003.

29. Korotaev S.M., Zhdanov M.S., Orekhova D.A., Kruglyakov M.S., Trofimov I.L., Schors Y.G., Shneyer V.S., 2010. Study of the possibility of the use of the magnetotelluric sounding method in the Arctic ocean with quantitative modeling. Izvestiya, Physics of the Solid Earth 46 (9), 759–771. https://doi.org/10.1134/S1069351310090053.

30. Kother L., Hammer M.D., Finlay C.C., Olsen N., 2015. An equivalent source method for modelling the global lithospheric magnetic field. Geophysical Journal International 203 (1), 553–566. https://doi.org/10.1093/gji/ggv317.

31. Kumar P., Kind R., Priestley K., Dahl-Jensen T., 2007. Crustal structure of Iceland and Greenland from receiver function studies. Journal of Geophysical Research: Solid Earth 112 (B3), B03301. https://doi.org/10.1029/2005JB003991.

32. Lawver L.A., Müller R.D., 1994. Iceland hotspot track. Geology 22 (4), 311–314. https://doi.org/10.1130/0091-7613(1994)022<0311:IHT>2.3.CO;2.

33. Lebedev S., Boonen J., Trampert J., 2009. Seismic structure of Precambrian lithosphere: new constraints from broadband surface-wave dispersion. Lithos 109 (1–2), 96–111. https://doi.org/10.1016/j.lithos.2008.06.010.

34. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., Childers V., Dostaler F., Fairhead J. D., Finn C., von Frese R. R. B., Gaina C., Golynsky S., Kucks R., Lühr H., Milligan P., Mogren S., Müller R. D., Olesen O., Pilkington M., Saltus R., Schreckenberger B., Thébault E., Caratori Tontini F., 2009. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems 10 (8), Q08005. https://doi.org/10.1029/2009GC002471.

35. Maus S., Rother M., Holme R., Lühr H., Olsen N., Haak V., 2002. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophysical Research Letters 29 (14), 1702. https://doi.org/10.1029/2001GL013685.

36. Maus S., Yin F., Lühr H., Manoi C., Rother M., Rauberg J., Michaelis I., Stolle C., Muller R.D., 2008. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochemistry, Geophysics, Geosystems 9 (7), Q07021. https://doi.org/10.1029/2008GC001949.

37. Olsen N., Lühr H., Finlay C.C., Sabaka T.J., Michaelis I., Rauberg J., Tøffner-Clausen L., 2014. The CHAOS-4 geomagnetic field model. Geophysical Journal International 197 (2), 815–827. https://doi.org/10.1093/gji/ggu033.

38. Olsen N., Ravat D., Finlay C., Kother L.K., 2017. LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations. Geophysical Journal International 211 (3), 1461–1477. https://doi.org/10.1093/gji/ggx381.

39. Pechersky D.M. (Ed.), 1994. Petromagnetic Model of the Lithosphere. Naukova Dumka, Kiev, 175 p. (in Russian)

40. Reigber C., Lühr H., Schwintzer P., 2002. CHAMP mission status. Advances in Space Research 30 (2), 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4.

41. Rickers F., Fichner A., Trampert J., 2013. The Iceland – Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth and Planetary Science Letters 367, 39–51. https://doi.org/10.1016/j.epsl.2013.02.022.

42. Steffen R., Strykowski G., Lunda B., 2017. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data. Tectonophysics 706–707, 206–220. https://doi.org/10.1016/j.tecto.2017.04.014.

43. Stockmann R., Finlay C., Jackson A., 2009. Imaging Earth’s crustal magnetic field with satellite data: a regularized spherical triangle tessellation approach. Geophysical Journal International 179 (2), 929–944. https://doi.org/10.1111/j.1365-246X.2009.04345.x.

44. Tanaka A., Okubo Y., Matsubayashi O., 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306 (3–4), 461–470. https://doi.org/10.1016/S0040-1951(99)00072-4.

45. Thébault E., Vigneron P., Langlais B., Hulot G.A., 2016. Swarm lithospheric magnetic field model to SH degree 80. Earth, Planets and Space 68, 126. https://doi.org/10.1186/s40623-016-0510-5.

46. Wessel P., Smith W.H.F., 2007. The Generic Mapping Tools. Technical Reference and Cookbook Version 4.2. Available from: http://gmt.soest.hawaii.edu.

47. Yanovsky B.M., 1978. Terrestrial Magnetism. Publishing House of the Leningrad State University, Leningrad, 592 p. (in Russian)


Review

For citations:


Abramova D.Yu., Abramova L.M., Filippov S.V. Correlation between lithospheric magnetic anomalies and tectonic structures in the Norwegian-Greenland region of the Arctic. Geodynamics & Tectonophysics. 2018;9(4):1163-1172. (In Russ.) https://doi.org/10.5800/GT-2018-9-4-0388

Views: 1052


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)