FIELD TECTONOPHYSICS IN SOLUTIONS OF GEODYNAMIC EVOLUTION PROBLEMS OF THE UKRAINE TERRITORY
https://doi.org/10.5800/GT-2013-4-3-0101
Abstract
The integrated approach combining kinematic and structural-paragenetic field tectonophysics techniques allows us to construct a continuous time scan of the stress-strain state (SSS) and deformation modes (DM) from sediment lithification to the final orogenic process for the studied areas. Definitions of the continuous sequence of SSS and DM provide for control of the known geodynamic reconstructions and adjustment of geodynamic models. An example is the tectonophysical study of the Alpine structural stage of the Western Mountainous Crimea (WMC) and the Pre-Cambrian complexes of the Ukrainian Shield (USh).
Data from WMC allow us to make adjustments to the geodynamic model of the Mountainous Crimea. In particular, trajectories of the principal normal stresses (Fig. 4 and 5), both for shifts and shear faults with reverse components/ normal faults, suggest the reverse nature of movements of the Eastern and Western Black Sea microplates with their overall pushing onto the Crimean peninsula in the south-east, south and south-west (Fig. 7). In the Precambrian USh complexes (Fig. 8), 13 stages of regional deformation are revealed between ≥2.7 and 1.6 billion years ago. Until the turn of 2.05–2.10 billion years, the region was subject to transtension and transpression, as the Western (gneiss-granulite) and Eastern (granite-greenstone) Archean microplates of USh moved to separate from each other in the Neo-Archean and then diverged and converged in the Paleoproterozoic (movements at a sharp angle). It is assumed that in the Archean the Western and Eastern microplates were separated by the oceanic or sub-oceanic lithosphere (Fig. 12, 13). During the period of 2.3–2.4 billion years, the plates fully converged creating a zone of collision. It may be suggested that a possible mechanism for the oceanic window close-up was underthrusting of the upper suboceanic lithosphere layers beneath the crust-mantle plates on gently sloping break-up surfaces (non-subduction option), and one of them is Moho.
Spreading of the Western and Eastern microplates of USh began at the turn of 2.05–2.10 billion years, as evidenced by the available tectonophysical data on fields of latitudinal extension of the crust. During spreading 2.1–2.05 billion years ago, emanations and solutions were able to ascend into the upper crust and thus stimulate palingenesis (Novoukrainsky and Kirovogradsky granites), and during repeated spreading 1.75 billion years ago, magma of the basic and acid composition (Pluto gabbro-anorthosite and rapakivi) intruded into the upper crust. The spreading zone coincided with the former collisional suture and became the site wherein the inter-regional Kherson-Smolensk suture was formed; it stretches submeridionally across the East European platform.
About the Authors
O. B. GintovUkraine
Corresponding Member of NAS of Ukraine, Doctor of Geology and Mineralogy, professor
A. V. Murovskaya
Ukraine
Candidate of Geology, Junior Researcher of Department of Tectonophysics
S. V. Mychak
Ukraine
Candidate of Geology, Junior Researcher of Department of Tectonophysics
References
1. Bogdanova S.V., Pashkevich I.K., Gorbatschev R., Orlyuk M.I., 1996. Riphean rifting and major Palaeoproterozoic crustal boundaries in the basement of the East European Craton: geology and geophysics. Tectonophysics 268 (1-4), 1-21. http://dx.doi.org/10.1016/S0040-1951(96)00232-6.
2. Chardon D., Gapais D., Cagnard F., 2009. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanero- zoic. Tectonophysics 477 (3-4), 105-118. http://dx.doi.org/10.1016/j.tecto.2009.03.008.
3. Devlaux D., Sperner B., 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, Special Publications 212, 75-100.
4. Dovbnich M.M., Demianets S.N., 2009. Stress fields of the tectonosphere due to violation of geoisostasy and geodynamics of the Crimean Black Sea region. Geofizicheskiy Zhurnal 31 (2), 107-116 (in Russian) [Довбнич М.М., Демьянец С.Н. По¬ля напряжений тектоносферы, обусловленные нарушением геоизостазии и геодинамика Крымско-Черноморского региона // Геофизический журнал. 2009. Т. 31. № 2. С. 107-116].
5. Geyko V.S., Tsvetkova T.A., Shumlyanska L.A., Bugaenko I.V., Zayets L.N., 2005. Regional 3-D P-velocity model of the mantle of Sarmatia (south-west of the East-European Platform). Geofizicheskiy Zhurnal 27 (6), 927-939 (in Russian) [Гейко В.С., Цветкова Т.А., Шумлянская Л.А., Бугаенко И.В., Заец Л.Н. Региональная 3-D P-скоростная модель мантии Сарматии (юго-запад Восточно-Европейской платформы) // Геофизический журнал. 2005. Т. 27. № 6. С. 927-939].
6. Gintov O.B., 2005. Field Tectonophysics and Its Application in Studies of Crustal Deformation in Ukraine. Phoenix, Kiev, 572 p. (in Russian) [Гинтов О.Б. Полевая тектонофизика и ее применение при изучении деформаций земной коры Украины. Киев: Феникс, 2005. 572 с.].
7. Gintov O.B., Isai V.M., 1988. Tectonophysical Studies of Faults in the Consolidated Crust. Naukova Dumka, Kiev, 228 p. (in Russian) [Гинтов О.Б., Исай В.М. Тектонофизические исследования разломов консолидированной коры. Киев: Наукова думка, 1988. 228 с.].
8. Gintov O.B., Murovskaya A.V., Mychak S.V., 2008. Integration of structural, paragenetical and kinematical methods as a pre¬requisite for progress in field tectonophysics. In: Tectonophysics and Current Problems of Earth Sciences. Proceedings of the All-Russia Conference. Institute of Physics of the Earth, RAS, Moscow, Vol. 1, p. 22-28 (in Russian) [Гинтов О.Б., Муровская А.В., Мычак С.В. Комплексирование структурно-парагенетического и кинематического методов - условие дальнейшего прогресса в полевой тектонофизике // Тектонофизика и актуальные вопросы наук о Земле: Материалы докладов Всероссийской конференции. М.: Институт физики Земли РАН, 2008. Т. 1. С. 22-28].
9. Gintov O.B., MychakS.V., 2011. Geodynamic evolution of Ingulsky megablock of the Ukrainian shield according to geologi¬cal, geophysical and tectonophysical data. 2. Geofizicheskiy Zhurnal 33 (4), 89-99 (in Russian) [Гинтов О.Б., Мычак С.В. Геодинамическое розвитие Ингульского мегаблока Украинского щита по геолого-геофизическим и тектонофизическим данным. 2 // Геофизический журнал. 2011. Т. 33. № 4. С. 89-99].
10. Gintov O.B., Pashkevich I.K., 2010. Tectonophysical analysis and geodynamical interpretation of three-dimensional geo¬physical model of the Ukrainian shield. Geofizicheskiy Zhurnal 32 (2), 3-27 (in Russian) [Гинтов О.Б., Пашкевич И.К. Тектонофизический анализ и геодинамическая интерпретация трехмерной геофизической модели Украинского щита // Геофизический журнал. 2010. Т. 32. № 2. С. 3-27].
11. Gushchenko O.I., 1979. Method of kinematic analysis of destruction structures at the reconstruction of fields of tectonic stressesK In: Fields of stresses and deformations in the lithosphere. Nauka, Moscow, p. 7-25 (in Russian) [Гущенко О.И. Метод кинематическеого анализа структур разрушения при реконструкции полей тектонических напряжений // Поля напряжений и деформаций в литосфере. М.: Наука, 1979. С. 7-25].
12. Murovskaya A.V., 2012. The stress-strained state of the Western Mountainous Crimea in the Oligocene-Quaternary according to tectonophysical data. Geofizicheskiy Zhurnal 34, (2), 109-119 (in Russian) [Муровская А.В. Напряженно-дефор¬мированное состояние Западного Горного Крыма в олигоцен-четвертичное время по тектонофизическим данным // Геофизический журнал. 2012. Т. 34. № 2. С. 109-119].
13. Patalaha E.I., Gonchar V.V., Senchenkov I.K., Chervinko O.P., 2003. The Indentor Mechanism in Geodynamics of the Cri¬mean Black Sea region. Emko, Kiev, 226 p. (in Russian) [Паталаха Е.И., Гончар В.В., Сенченков И.К., Червинко О.П. Инденторный механизм в геодинамике Крымско-Черноморского региона. Киев: Эмко, 2003. 226 с.].
14. Pustovitenko B.G., 2002. Focal mechanisms of perceptible earthquakes of the Crimean Black Sea region during the last 20 years. In: Seismological Bulletin of Ukraine, 2000. Publishing House of IG NASU, KES, Kiev, p. 59-64 (in Russian) [Пустовитенко Б.Г. Механизмы очагов ощутимых землетрясений Крымско-Черноморского региона последних 20 лет. Сейсмологический бюллетень Украины за 2000 год. Киев: Изд-во ИГ НАНУ, КЭС, 2002. С. 59-64].
15. Rebetsky Yu.L., 2002. The review of methods of reconstruction of tectonic stresses and seismotectonic deformations. In: Tec¬tonophysics today. JIPE RAS, Moscow, p. 227-243 (in Russian) [Ребецкий Ю.Л. Обзор методов реконструкции тектонических напряжений и сейсмотектонических деформаций // Тектонофизика сегодня. М.: ОИФЗ РАН, 2002. С. 227-243].
16. Shcherbak N.P., 2005. Geochronology of the Early Precambrian Ukrainian Shield. The Archean. Naukova Dumka, Kiev, 244 p. (in Russian) [Щербак Н.П. Геохронология раннего докембрия Украинского щита. Архей. Киев: Наукова думка, 2005. 244 с.].
17. Shcherbak N.P., 2008. Geochronology of the Early Precambrian of the Ukrainian Shield. The Proterozoic. Naukova Dumka, Kiev, 240 p. (in Russian) [Щербак Н.П. Геохронология раннего докембрия Украинского щита. Протерозой. Киев: Наукова думка, 2008. 240 с.].
18. Sizova E., Gerya T., Brown M., Perchuk L., 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116 (3-4), 209-229. http://dx.doi.org/10.1016/j.lithos.2009.05.028.
19. Volfman Yu.M., 2008. The effect of kinematic environments on the cyclical geological processes within the Crimea and the Northern Black Sea region during the Alpine stage. Geofizicheskiy Zhurnal 30 (5), 101-114 (in Russian) [Вольфман Ю.М. О влиянии кинематических обстановок на цикличность геологических процессов в пределах Крыма и Се¬верного Причерноморья в течение альпийского этапа // Геофизический журнал. 2008. Т. 30. № 5. C. 101-114].
Review
For citations:
Gintov O.B., Murovskaya A.V., Mychak S.V. FIELD TECTONOPHYSICS IN SOLUTIONS OF GEODYNAMIC EVOLUTION PROBLEMS OF THE UKRAINE TERRITORY. Geodynamics & Tectonophysics. 2013;4(3):281-299. (In Russ.) https://doi.org/10.5800/GT-2013-4-3-0101