Geodynamic conditions for Cenozoic activation of tectonic structures in Southeastern Mongolia
https://doi.org/10.5800/GT-2018-9-3-0374
Abstract
The knowledge of the neotectonic structures inSoutheastern Mongolia, that is considerably distant from the active plate boundaries, is important for determining a source of tectonic deformation and regular features of activation in the intracontinental setting. Our research was focused on the East Gobi and South Gobi depressions located inSoutheastern Mongolia, which developed since the Mesozoic and were activated to various degrees in the neotectonic stage. The study aimed to assess the paleostress state of the crust inSoutheastern Mongolia, identify the stages, factors and mechanisms of the Cenozoic activation of the regional structures of different strike, and determine the sources of activation. The analysis of the available literature suggests a similar history of their development in the Late Jurassic – Early Cretaceous (rifting) and Late Cretaceous – Paleogene (tectonic quiescence). In the Cenozoic stage, the depressions experienced activation of completely different styles. In theEast Gobidepression, left-lateral strike-slip faults were activated in the Tertiary, and the post-Late Cretaceous thrusting took place along the northeastern faults on the northern slope of the Totoshan uplift. In the Early Cenozoic, the N-S and N-W compression was dominant as evidenced by the deformed Late Cretaceous sediments and the reconstructed stress tensors typical of the compression and transpression regimes. An overview of the published data suggests that the most probable cause of such deformation was the impact of the Western Pacific zone of plate interaction. However, a potential influence of compression at the early stages of the Indo-Asian collision cannot be completely excluded. TheEast Gobidepression was low active in the second half of the Cenozoic. In contrast to the East Gobi depression, theSouth Gobiactivation began in the Late Cenozoic (Late Miocene – Early Pliocene). Young uplifts and forbergs (Gobi Altai eastern termination) developed actively and ‘cut’ the sediments of the basins originating from the Mesozoic. The W-E and N-W strike-slip and thrust faults were active in the Pliocene–Quaternary. The stress field reconstructions show compression, transpression and strike-slip regimes with the NE-trending axis of compression. Deformation in the East Goby Altay (as well as in Western andSouthwestern Mongolia) is driven by the India-Eurasia collision.
About the Authors
A. V. ParfeevetsRussian Federation
Anna V. Parfeevets, Candidate of Geology and Mineralogy, Researcher
128 Lermontov street, Irkutsk 664033;
V. A. Sankov
Russian Federation
Vladimir A. Sankov, Candidate of Geology and Mineralogy, Head of Laboratory, Institute of the Earth’s Crust, Siberian Branch of RAS
128 Lermontov street, Irkutsk 664033; 3 Lenin street, Irkutsk 664003
References
1. Badarch G., Cunningham W.D., Windley B.F., 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21 (1), 87–110. https://doi.org/10.1016/S1367-9120(02)00017-2.
2. Baljinnyam I., Bayasgalan A., Borisov B.A., Cisternas A., Dem’yanovich M.G., Ganbataar L., Kochetkov V.M., Kurushin R.A., Molnar P., Hervé P., Vashchilov Yu.Ya., 1993. Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geological Society of America Memoirs, vol. 181, 62 p. https://doi.org/10.1130/MEM181.
3. Bayasgalan A., Jackson J., Ritz J.-F., Carretier S., 1999. ‘Forebergs’, flowers structures, and the development of large intra-continental strike-slip fault: the Gurvan Bogd fault system in Mongolia. Journal of Structural Geology 21 (10), 1285–1302. https://doi.org/10.1016/S0191-8141(99)00064-4.
4. Bird P., 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems 4 (3), 1027. https://doi.org/10.1029/2001GC000252.
5. Carroll A.R., Graham S.A., Smithz M.E., 2010. Walled sedimentary basins of China. Basin Research 22 (1), 17–32. https://doi.org/10.1111/j.1365-2117.2009.00458.x.
6. Constenius K., Coogan J., Erdenebat B., Tully J., Johnson C., Graham S., Cunningham D., 2013. Late Jurassic – Early Cretaceous rifting in the Tugrug and Taatsiin Tsagaan Nuur Basins, Gobi-Altai Region of SW Mongolia – implications for petroleum exploration. In: AAPG Annual Convention and Exhibition, Search and Discovery Article #10485.
7. Cunningham D., 2007. Structural and topographic characteristics of restraining bend mountain ranges of the Altai, Gobi Altai and easternmost Tien Shan. In: W.D. Cunningham, P. Mann (Eds.), Tectonics of strike-slip restraining and releasing bends. Geological Society, London, Special Publications, vol. 290, p. 219–237. https://doi.org/10.1144/SP290.7.
8. Cunningham D., 2010. Tectonic setting and structural evolution of the Late Cenozoic Gobi Altai orogeny. In: T.M. Kusky, M.G. Zhai, W.J. Xiao (Eds.), The evolving continents: understanding processes of continental growth and stabilization. Geological Society, London, Special Publication, vol. 338, p. 361–387. https://doi.org/10.1144/SP338.17.
9. Cunningham D., 2013. Mountain building processes in intracontinental oblique deformation belts: lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology 46, 255–282. https://doi.org/10.1016/j.jsg.2012.08.010.
10. Cunningham D., Davies S., McLean D., 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region. Journal of the Geological Society 166 (2), 321–333. https://doi.org/10.1144/0016-76492008-082.
11. Daoudene Y., Gapais D., Ledru P., Cocherie A., Hocquet S., Donskaya T.V., 2009. The Ereendavaa Range (north-eastern Mongolia): an additional argument for Mesozoic extension throughout eastern Asia. International Journal of Earth Sciences 98 (6), 1381–1393. https://doi.org/10.1007/s00531-008-0412-2.
12. Darby B.J., Ritts B.D., Yue Y., Meng Q., 2005. Did the Altyn Tagh fault extend beyond the Tibetan Plateau? Earth and Planetary Science Letters 240 (2), 425–435. https://doi.org/10.1016/j.epsl.2005.09.011.
13. Davis G.A., Darby B.J., Yadong Z., Spell T.L., 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology 30 (11), 1003–1006. https://doi.org/10.1130/0091-7613(2002)030%3C1003:GATEOA%3E2.0.CO;2.
14. Davis G.A., Qian X., Zheng Y.D., Tong H.M., Yu H., Gehrels G., Shafiqullah M., Fryxell J., 1996. Mesozoic deformation and plutonism in the Yunmeng Shan: a metamorphic core complex north of Beijing, China. In: A. Yin, T.M. Harrison (Eds.), The tectonic evolution of Asia. Cambridge University Press, Cambridge, p. 253–280.
15. Delvaux D., 1993. The TENSOR programm for reconstruction: examples from east African and the Baikal rift systems. Terra Abstracts. Abstract Supplement to Terra Nova 5, 216.
16. Delvaux D., 2012. Release of program Win-Tensor 4.0 for tectonic stress inversion: statistical expression of stress parameters. Geophysical Research Abstracts 14, EGU2012-5899. Available from: https://meetingorganizer.copernicus.org/EGU2012/EGU2012-5899.pdf (Software available from: http://users.skynet.be/damien.delvaux/Tensor/tensor-index.html).
17. Delvaux D., Moeys R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., Sankov V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282 (1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.
18. Delvaux D., Moyes R., Stapel G., Melnikov A., Ermikov V., 1995. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia, Part 1. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics 252 (1–4), 61–101. https://doi.org/10.1016/0040-1951(95)00090-9.
19. Dill H.G., Altangerel S., Bulgamaa J., Hongor O., Khishigsuren S., Majigsuren Yo., Myagmarsuren S., Heunisch C., 2004. The Baganuur coal deposit, Mongolia: depositional environments and paleoecology of a Lower Cretaceous coal-bearing intermontane basin in Eastern Asia. International Journal of Coal Geology 60 (2–4), 197–236. https://doi.org/10.1016/j.coal.2003.09.008.
20. Dugarmaa T., Shlupp A. (Eds.), 2000. One Century of Seismicity of Mongolia. CAG MAS, Ulaanbaatar, 141 p.
21. Feng Z.Q., Jia C.Z., Xie X.N., Zhang S., Feng Z.H., Cross A.T., 2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Research 22 (1), 79–95. https://doi.org/10.1111/j.1365-2117.2009.00445.x.
22. Florensov N.A., Solonenko V.P., 1963. The Gobi-Altai Earthquake. Publishing House of the USSR Acad. Sci., Moscow, 391 p. (in Russian).
23. Graham S.A., Hendrix M.S., Johnson C.L., Badamgarav D., Badarch G., Amory J., Porter M., Barsbold R., Webb L.E., Hacker B.R., 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geological Society of America Bulletin 113 (12), 1560–1579. https://doi.org/10.1130/0016-7606(2001)113%3C1560:SRATIO%3E2.0.CO;2.
24. Horton B.K., Constenius K.N., Tully J., Coogan J.C., Menotti T., Buyan-Arivjikh D., Yasli M., Erdenejav U., Payton A., 2013. Late Jurassic – Early Cretaceous Synrift Sedimentation in the Tsagaan Suvarga Basin, Gobi-Altai Region of SW Mongolia. In: AAPG Annual Convention and Exhibition, Search and Discovery Article #10487.
25. Howard J.P., Cunningham W.D., Davies S.J., 2006. Competing processes of clastic deposition and compartmentalized inversion in an actively evolving transpressional basin, Western Mongolia. Journal of the Geological Society 163 (4), 657–670. https://doi.org/10.1144/0016-764904-073.
26. Howard J.P., Cunningham W.D., Davies S.J., Dijkstra A.H., Badarch G., 2003. The stratigraphic and structural evolution of the Dzereg Basin, Western Mongolia: clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting. Basin Research 15 (1), 45–72. https://doi.org/10.1046/j.1365-2117.2003.00198.x.
27. Johnson C.L., 2004. Polyphase evolution of the East Gobi basin: sedimentary and structural records of Mesozoic-Cenozoic intraplate deformation in Mongolia. Basin Research 16 (1), 79–99. https://doi.org/10.1111/j.1365-2117.2004.00221.x.
28. Johnson L., Constenius K., Graham S., Mackey G., Menotti T., Payton A., Tully J., 2015. Subsurface evidence for Late Mesozoic extension in Western Mongolia: tectonic and petroleum systems implications. Basin Research 27 (3), 272–294. https://doi.org/10.1111/bre.12073.
29. Leonov M.G., 2012. Within-plate zones of concentrated deformation: Tectonic structure and evolution. Geotectonics 46 (6), 389–411. https://doi.org/10.1134/S0016852112060052.
30. Levi K.G., 2007. New neotectonic map of the northeastern sector of Asia. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 5, Vol. 1. Institute of the Earth’s Crust of SB RAS, Irkutsk, p. 136–139 (in Russian).
31. Li K., Jolivet M., Zhang Z., Li J., Tang W., 2016. Long-term exhumation history of the Inner Mongolian Plateau constrained by apatite fission track analysis. Tectonophysics 666, 121–133. https://doi.org/10.1016/j.tecto.2015.10.020.
32. Marinov N.A., Zonenshain L.P., Blagonravov V.A. (Eds.), 1973. Geology of the Mongolian People's Republic. Vol. 1. Stratigraphy. Nedra, Moscow, 584 p. (in Russian).
33. Mazukabzov A.M., Donskaya T.V., Gladkochub D.P., Sklyarov E.V.,Ponomarchuk V.A., Sal’nikova E.B., 2006. Structure and age of the metamorphic core complex of the Burgutui ridge (Southwestern Transbaikal region). Doklady Earth Sciences 407 (2), 179–183. https://doi.org/10.1134/S1028334X06020048.
34. Mazukabzov A.M., Gladkochub D.P., Donskaya T.V., Sklyarov E.V., Ripp G.S., Izbrodin I.A., Wang T., Zeng L.S., 2011. The Selenga metamorphic core complex (Western Transbaikalian Region). Doklady Earth Sciences 440 (1), 1212–1215. https://doi.org/10.1134/S1028334X11090066.
35. Meng Q.-R., 2003. What drove late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369 (3–4), 155–174. https://doi.org/10.1016/S0040-1951(03)00195-1.
36. Metelkin D.V., Gordienko I.V., Klimuk V.S., 2007. Paleomagnetism of Upper Jurassic basalts from Transbaikalia: new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia. Russian Geology and Geophysics 48 (10), 825–834. https://doi.org/10.1016/j.rgg.2007.09.004.
37. Radziminovich N.A., Bayar G., Miroshnichenko A.I., Demberel S., Ulzibat M., Ganzorig D., Lukhnev A.V., 2016. Focal mechanisms of earthquakes and stress field of the crust in Mongolia and its surroundings. Geodynamics and Tectonophysics 7 (1), 23–38. https://doi.org/10.5800/GT-2016-7-1-0195.
38. Ritts B.D., Berry A.K., Johnson C.L., Darby B.J., Davis G.A., 2010. Early Cretaceous supradetachment basins in the Hohhot metamorphic core complex, Inner Mongolia, China. Basin Research 22 (1), 45–60. https://doi.org/10.1111/j.1365-2117.2009.00433.x.
39. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45 (5), 378–393. https://doi.org/10.1134/S0016852111050049.
40. Sherman S.I., Kuchay O.A., Bushenkova N.A., 2017. Geodynamic and seismic zonation of the formation of the stron-gest earthquakes in Central Asia. Interexpo Geo-Siberia 2 (4), 71–75 (in Russian).
41. Sherman S.I., Ma Jin, Gorbunova Е.А., 2015. Recent strong earthquakes in Central Asia: regular tectonophysical features of locations in the structure and geodynamics of the lithosphere. Part 1. Main geodynamic factors predetermining locations of strong earthquakes in the structure of the lithosphere in Central Asia. Geodynamics & Tectonophysics 6 (4), 409–436. https://doi.org/10.5800/GT-2015-6-4-0188.
42. Sklyarov E.V., Mazukabzov A.M., Mel’nikov A.I., 1997. Metamorphic Core Complexes of the Cordilleran Type. SPC UIGGM SB RAS, Novosibirsk, 192 p. (in Russian).
43. Tomurtogoo O. (Ed.), 1999. Geological Map of Mongolia. Scale 1:1000000. Institute of Geology and Mineral Resources, Mongolian Academy of Sciences.
44. Traynor J.J., Sladen C., 1995. Tectonic and stratigraphic evolution of the Mongolian People's Republic and its influence on hydrocarbon geology and potential. Marine and Petroleum Geology 12 (1), 35–52. https://doi.org/10.1016/0264-8172(95)90386-X.
45. Van der Beek P.A., Delvaux D., Andriessen P.A.M., Levi K.G., 1996. Early Cretaceous denudation related to convergent tectonics in the Baikal region, SE Siberia. Journal of the Geological Society 153 (4), 515–523. https://doi.org/10.1144/gsjgs.153.4.0515.
46. Vincent S.J., Allen M.B., 1999. Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike-slip basin formation in Central Asia. Geological Society of America Bulletin 111 (5), 725–742. https://doi.org/10.1130/0016-7606(1999)111%3C0725:EOTMAC%3E2.3.CO;2.
47. Wang T., Guo L., Zheng Y., Donskaya T., Gladkochub D., Zeng L., Li J., Wang Y., Mazukabzov A., 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: mainly constrained by zircon U–Pb ages from metamorphic core complexes. Lithos 154, 315–345. https://doi.org/10.1016/j.lithos.2012.07.020.
48. Watson M.P., Hayward A.B., Parkinson D.N., Zhang Z.M., 1987. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology 4 (3), 205–225. https://doi.org/10.1016/0264-8172(87)90045-6.
49. Webb L.E., Graham S.A., Johnson C.L., Badarch G., Hendrix M.S., 1999. Occurrence, age, and implications of the Yagan–Onch Hayrhan metamorphic core complex, southern Mongolia. Geology 27 (2), 143–146. https://doi.org/10.1130/0091-7613(1999)027%3C0143:OAAIOT%3E2.3.CO;2.
50. Webb L.E., Johnson C.L., 2006. Tertiary strike-slip faulting in southeastern Mongolia and implications for Asian tectonics. Earth and Planetary Science Letters 241 (1–2), 323–335. https://doi.org/10.1016/j.epsl.2005.10.033.
51. Worrall D.M., Kruglyak V., Kunst F., Kuznetsov V., 1996. Tertiary tectonics of the Sea of Okhotsk, Russia: Far‐field effects of the India‐Eurasia collision. Tectonics 15 (4), 813–826. https://doi.org/10.1029/95TC03684.
52. Yang Y.T., 2013. An unrecognized major collision of the Okhotomorsk block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific. Earth-Science Reviews 126, 96–115. https://doi.org/10.1016/j.earscirev.2013.07.010.
53. Yanshin A.L. (Ed.), 1975. Mesozoic and Cenozoic Tectonics and Magmatism of Mongolia (Proceedings of the Joint Soviet-Mongolian Geological Expedition, Issue 11). Nauka, Moscow, 308 p. (in Russian).
54. Yin A., 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 488 (1–4), 293–325. https://doi.org/10.1016/j.tecto.2009.06.002.
55. Yue Y., Liou J.G., 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology 27 (3), 227–230. https://doi.org/10.1130/0091-7613(1999)027%3C0227:TSEMFT%3E2.3.CO;2.
56. Zhang F., Wu Z., Li W., 2018. Structural anatomy and dynamics of evolution of the Huanghua Depression during the Indosinian-Yanshan movement: Implication for the destruction of North China Craton. Geophysical Research Abstracts 20, EGU2018-7072. Available from: https://meetingorganizer.copernicus.org/EGU2018/EGU2018-7072.pdf.
57. Zonenshain L.P., Savostin L.A., 1979. Introduction to Geodynamics. Nedra, Moscow, 234 pp. (in Russian).
58. Zorin Y.A., 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951(99)00042-6.
Review
For citations:
Parfeevets A.V., Sankov V.A. Geodynamic conditions for Cenozoic activation of tectonic structures in Southeastern Mongolia. Geodynamics & Tectonophysics. 2018;9(3):855-888. https://doi.org/10.5800/GT-2018-9-3-0374