Prediction and observation of strain waves in the Earth
https://doi.org/10.5800/GT-2018-9-3-0369
Abstract
The theoretical prediction of strain waves in the Earth is one of the most significant achievements in geophysics of the last third of the 20th century. Using the strain wave theory, the physical foundations were developed for the mathematical theory of strain wave propagation, and the search for methods that could detect the strain waves in experiment and simulation has commenced. This article provides an overview of the history of the strain wave theory and describes the observation methods, the main types of geological structures generating strain waves, and the properties of strain waves. It presents the most important results of the theoretical, laboratory and field studies of slow migration of strain. Future studies based on the strain wave theory may initiate a fundamental revision of the current concepts of the seismic process.
About the Author
V. G. BykovRussian Federation
Victor G. Bykov, Doctor of Physics and Mathematics
65 Kim Yu Chen Street, Khabarovsk 680000
References
1. Aero E.L., Bulygin A.N., Pavlov Y.V., 2009. Solutions of the three-dimensional sine-Gordon equation. Theoretical and Mathematical Physics 158 (3), 313–319. https://doi.org/10.1007/s11232-009-0025-3.
2. Albarello D., Bonafede M., 1990. Stress diffusion across laterally heterogeneous plates. Tectonophysics 179 (1–2), 121–130. https://doi.org/10.1016/0040-1951(90)90361-B.
3. Anderson D.L., 1975. Accelerated plate tectonics. Science 187 (4181), 1077–1079. https://doi.org/10.1126/science.187.4181.1077.
4. Androsov I.V., Zhadin V.V., Potashnikov I.A., 1989. Spatial-temporal structure of earthquake migration and seismic belts. Doklady AN SSSR 306 (6), 1339–1342 (in Russian).
5. Asada T. (Ed.), 1984. Earthquake Forecasting Methods. Their Application in Japan. Nedra, Moscow, 312 p. (in Russian).
6. Barabanov V.L, Grinevsky A.O., Belikov V.M., Ishankuliev G.A., 1994. On the migration of crustal earthquakes. In: A.V. Nikolaev (Ed.), Dynamic processes in geophysical medium. Nauka, Moscow, p. 149–167 (in Russian).
7. Barabanov V.L., Grinevsky A.O., Kissin I.G., Milkis M.R., 1988. Manifestations of strain waves in the hydrogeological and seismic regimes of the zone of the Frontal Kopetdag fault. Izvestiya AN SSSR, Seriya Fizika Zemli (5), 21–31 (in Russian).
8. Baranov B.V., Lobkovsky L.I., 1980. Shallow-focus seismicity in the rear area of the Kuril Island arc and its relation to the Zavaritsky-Benioff zone. Doklady AN SSSR 255 (1), 67–71 (in Russian).
9. Baranov B.V., Vikulin A.V., Lobkovsky L.I., 1989. Shallow-focus seismicity in the rear area of the Kuril-Kamchatka island arc and its relation to the strongest earthquakes in the under-thrust zone. Vulkanologiya i Seismologiya (6), 73–84 (in Russian).
10. Bazavluk T.A., Yudakhin F.N., 1993. Strain waves in the crust of the Tien Shan from seismological data. Doklady AN 329 (5), 565–570 (in Russian).
11. Bazavluk T.A., Yudakhin F.N., 1998. Temporal variations of exchange-forming inhomogeneities in the Earth's crust, Tien Shan. Doklady Earth Sciences 362 (7), 987–989.
12. Bella F., Bella R., Biagi P.F., Della Monica G., Ermini A., Sgrigna V., 1987. Tilt measurements and seismicity in Central Italy over a period of approximately three years. Tectonophysics 139 (3–4), 333–338. https://doi.org/10.1016/0040-1951(87)90108-9.
13. Bella F., Biagi P.F., Caputo M., Della Monica G., Ermini A., Manjgaladze P., Sgrigna V., Zilpimian D., 1990. Very slow-moving crustal strain disturbances. Tectonophysics 179 (1–2), 131–139. https://doi.org/10.1016/0040-1951(90)90362-C.
14. Beroza G.C., Ide S., 2011. Slow earthquakes and nonvolcanic tremor. Annual Review of Earth and Planetary Sciences 39, 271–296. https://doi.org/10.1146/annurev-earth-040809-152531.
15. Bilham R.G., Beavan R.J., 1979. Strains and tilts on crustal blocks. Tectonophysics 52 (1–4), 121–138. https://doi.org/10.1016/0040-1951(79)90216-6.
16. Bird P., 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems 4 (3), 1027. https://doi.org/10.1029/2001GC000252.
17. Birger B.I., 1989. Propagation of stresses in the Earth's lithosphere. Izvestiya AN SSSR, Seriya Fizika Zemli (12), 3–18 (in Russian).
18. Blot C., 1981. Earthquakes at depth beneath volcanoes, forerunners of their activities. Application to White Island, New Zealand. Journal of Volcanology and Geothermal Research 9 (4), 277–291. https://doi.org/10.1016/0377-0273(81)90040-8.
19. Bormotov V.A., Bykov V.G., 1999. Seismological monitoring of the deformation process. Tikhookeanskaya Geologiya 18 (6), 17–25 (in Russian).
20. Bornyakov S.A., Panteleev I.A., Tarasova A.A., 2016. Dynamics of intrafault deformation waves: results of physical simulation. Doklady Earth Sciences 471 (2), 1316–1318. https://doi.org/10.1134/S1028334X16120175.
21. Bott M.H.P., Dean D.S., 1973. Stress diffusion from plate boundaries. Nature 243 (5406), 339–341. https://doi.org/10.1038/243339a0.
22. Brace W.F., Byerlee J.D., 1966. Stick-slip as a mechanism for earthquakes. Science 153 (3739), 990–992. https://doi.org/10.1126/science.153.3739.990.
23. Braun O.M., Kivshar Yu.S., 1998. Nonlinear dynamics of the Frenkel-Kontorova model. Physics Reports 306 (1–2), 1–108. https://doi.org/10.1016/S0370-1573(98)00029-5.
24. Braun O.M., Kivshar Yu.S., 2008. The Frenkel-Kontorova Model. Concepts, Methods, and Applications. Fizmatlit, Moscow, 536 p. (in Russian).
25. Brudzinski M.R., Allen R.M., 2007. Segmentation in episodic tremor and slip all along Cascadia. Geology 35 (10), 907–910. https://doi.org/10.1130/G23740A.1.
26. Bykov V.G., 1996. On the possibility of the formation of solitary seismic waves in granular geomaterials. Journal of Mining Science 32 (2), 105–108. https://doi.org/10.1007/BF02046679.
27. Bykov V.G., 2000. Nonlinear Wave Processes in Geological Medium. Dal'nauka, Vladivostok, 190 p. (in Russian)
28. Bykov V.G., 2001. A model of unsteady-state slip motion on a fault in a rock sample. Izvestiya, Physics of the Solid Earth 37 (6), 484–488.
29. Bykov V.G., 2005. Strain waves in the Earth: theory, field data, and models. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (11), 1158–1170.
30. Bykov V.G., 2008. Stick-slip and strain waves in the physics of earthquake rupture: experiments and models. Acta Geophysica 56 (2), 270–285. https://doi.org/10.2478/s11600-008-0002-5.
31. Bykov V.G., 2014. Sine-Gordon equation and its application to tectonic stress transfer. Journal of Seismology 18 (3), 497–510. https://doi.org/10.1007/s10950-014-9422-7.
32. Bykov V.G., 2015. Nonlinear waves and solitons in models of fault block geological media. Russian Geology and Geophysics 56 (5), 793–803. https://doi.org/10.1016/j.rgg.2015.04.010.
33. Bykov V.G., Trofimenko S.V., 2016. Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate. Nonlinear Processes in Geophysics 23 (6), 467–475. https://doi.org/10.5194/npg-23-467-2016.
34. Bykov V.G., Trofimenko S.V., 2017. Slow strain waves from seismological and geophysical observations. Geophysical Research Abstracts 19, EGU2017-2380. Available from: https://meetingorganizer.copernicus.org/EGU2017/EGU2017-2380.pdf.
35. Caputo M., 1979. Which is the correct stress strain relation for the anelasticity of the Earth's interior? Geophysical Journal of the Royal Astronomical Society 59 (1), 227–230. https://doi.org/10.1111/j.1365-246X.1979.tb02563.x.
36. Di Giovambattista R., Tyupkin Y., 2001. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy). Journal of Seismology 5 (2), 147–156. https://doi.org/10.1023/A:1011497601121.
37. Dillon O.W., 1966. Waves in bars of mechanically unstable materials. Journal of Applied Mechanics 33 (2), 267–274. https://doi.org/10.1115/1.3625037.
38. Dragoni M., Bonafede M., Boschi E., 1982. Stress relaxation in the earth and seismic activity. La Rivista del Nuovo Cimento 5 (2), 1–34. https://doi.org/10.1007/BF02740828.
39. Elsasser W.M., 1969. Convection and stress propagation in the upper mantle. In: S.K. Runcorn (Ed.), The application of modern physics to the Earth and planetary interiors. Wiley, New York, p. 223–246.
40. Elsasser W.M., 1971. Two-layer model of upper-mantle circulation. Journal of Geophysical Research 76 (20), 4744–4753. https://doi.org/10.1029/JB076i020p04744.
41. Firstov P.P., Makarov E.O., Glukhova I.P., 2017. Peculiarities of subsoil gas dynamics before the М 7.2 Zhupanovo earthquake of January 30, 2016, Kamchatka. Doklady Earth Sciences 472 (2), 196–199. https://doi.org/10.1134/S1028334X17020015.
42. Frank F.C., 1973. Dislocation models for fault creep processes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 274 (1239), 351–354. https://doi.org/10.1098/rsta.1973.0062.
43. Gamburtseva N.G., Lyuke E.I., Nikolaevsky V.N., Oreshin S.I., Pasechnik I.P., Peregontseva V.E., Rubinshtein Kh.D., 1982. Periodic variations in seismic wave parameters during scanning of the lithosphere by strong explosions. Doklady AN SSSR 266 (6), 1349–1353 (in Russian).
44. Garagash I.A., 1996. Microdeformations in a prestressed discrete geophysical medium. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 347 (2), 324–327.
45. Garagash I.A., Nikolaevsky V.N., 2009. Cosserat mechanics in Earth sciences. Computational Continuum Mechanics 2 (4), 44–66 (in Russian). https://doi.org/10.7242/1999-6691/2009.2.4.31.
46. Gershenzon N.I., Bambakidis G., 2014. Model of deep nonvolcanic tremor part I: Ambient and triggered tremor. Bulletin of the Seismological Society of America 104 (4), 2073–2090. https://doi.org/10.1785/0120130234.
47. Gershenzon N.I., Bambakidis G., 2015. Model of deep nonvolcanic tremor part II: Episodic tremor and slip. Bulletin of the Seismological Society of America 105 (2A), 816–830. https://doi.org/10.1785/0120140225.
48. Gershenzon N.I., Bambakidis G., Hauser E., Ghosh A., Greager K.C., 2011. Episodic tremors and slip in Cascadia in the framework of the Frenkel-Kontorova model. Geophysical Research Letters 38 (1), L01309. https://doi.org/10.1029/2010GL045225.
49. Gershenzon N.I., Bykov V.G., Bambakidis G., 2009. Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model. Physical Review E 79 (5), 056601. https://doi.org/10.1103/PhysRevE.79.056601.
50. Goldin S.V., 2002. Destruction of the lithosphere and physical mesomechanics. Fizicheskaya Mezomekhanika 5 (5), 5–22 (in Russian).
51. Gorbunova E.A., Sherman S.I., 2012. Slow deformation waves in the lithosphere: registration, parameters, and geodynamic analysis (Central Asia). Russian Journal of Pacific Geology 6 (1), 13–20. https://doi.org/10.1134/S181971401201006X.
52. Harada M., Furuzawa T., Teraishi M., Ohya F., 2003. Temporal and spatial correlations of the strain field in tectonic active region, southern Kyusyu, Japan. Journal of Geodynamics 35 (4–5), 471–481. https://doi.org/10.1016/S0264-3707(03)00008-5.
53. Ida Y., 1974. Slow-moving deformation pulses along tectonic faults. Physics of the Earth and Planetary Interiors 9 (4), 328–337. https://doi.org/10.1016/0031-9201(74)90060-0.
54. Isacks B., Oliver J., Sykes L.R., 1968. Seismology and the new global tectonics. Journal of Geophysical Research 73 (18), 5855–5899. https://doi.org/10.1029/JB073i018p05855.
55. Ishii H., Sato T., Tachibana K., Hashimoto K., Murakami E., Mishina M., Miura S., Sato K., Takagi A., 1983. Crustal strain, crustal stress and microearthquake activity in the northeastern Japan arc. Tectonophysics 97 (1–4), 217–230. https://doi.org/10.1016/0040-1951(83)90149-X.
56. Ishii H., Sato T., Takagi A., 1978. Characteristics of strain migration in the Northeastern Japanese Arc. (I) – Propagation characteristics. Science reports of the Tohoku University, Series 5, Geophysics 25 (2), 83–90.
57. Ishii H., Sato T., Takagi A., 1980. Characteristics of strain migration in the Northeastern Japanese Arc. (II) – Amplitude characteristics. Journal of the Geodetic Society of Japan 26 (1), 17–25.
58. Ito T., Hashimoto M., 2001. Migrating crustal deformation from GEONET observations. Eos, Transactions American Geophysical Union 82 (47), F265–F265. Abstract G31A-0122.
59. Johnston M.J.S., Linde AT., 2002. Implications of crustal strain during conventional, slow, and silent earthquakes. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology, Part A. International Geophysical Series, vol. 81. Academic Press, Amsterdam, p. 589–605.
60. Kasahara K., 1973. Earthquake fault studies in Japan. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 274 (1239), 287–296. https://doi.org/10.1098/rsta.1973.0055.
61. Kasahara K., 1979. Migration of crustal deformation. Tectonophysics 52 (1–4), 329–341. https://doi.org/10.1016/0040-1951(79)90240-3.
62. Kato A., Obara K., Igarashi T., Tsuruoka H., Nakagawa S., Hirata N., 2012. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335 (6069), 705–708. https://doi.org/10.1126/science.1215141.
63. Kenig M.J., Dillon O.W., 1966. Shock waves produced by small stress increments in annealed aluminum. Journal of Applied Mechanics 33 (4), 907–916. https://doi.org/10.1115/1.3625201.
64. King C.-Y., Nason R.D., Tocher D., 1973. Kinematics of fault creep Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 274 (1239), 355–360. https://doi.org/10.1098/rsta.1973.0063.
65. Kissin I.G., 2008. Hydrogeological effects of strain waves in the crust. Geofizicheskie Issledovaniya 9 (1), 43–52 (in Russian).
66. Kontorova T.A., Frenkel Ya.I., 1938. To the theory of plastic deformation and twinning. Journal of Experimental and Theoretical Physics 8 (1), 89–95 (in Russian).
67. Kreemer C., Blewitt G., Klein E.C., 2014. A geodetic plate motion and global strain rate model. Geochemistry, Geophysics, Geosystems 15 (10), 3849–3889. https://doi.org/10.1002/2014GC005407.
68. Kuz’min Y.O., 1989. Modern geodynamics of fault zones in sedimentary basins, and earthquake preparation processes. In: Earthquake Forecasting. No. 11. Donish, Moscow – Dushanbe, p. 52–60 (in Russian).
69. Kuz’min Y.O., 2012. Deformation autowaves in fault zones. Izvestiya, Physics of the Solid Earth 48 (1), 1–16. https://doi.org/10.1134/S1069351312010089.
70. Kuznetsov I.V., Keilis-Borok V.I., 1997. The interrelation of earthquakes of the Pacific seismic belt. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 355 (6), 869–873.
71. Landa P.S., 1997. Nonlinear Oscillations and Waves. Nauka, Fizmatlit, Moscow, 496 p. (in Russian).
72. Lehner F.K., Li V.C., Rice J.R., 1981. Stress diffusion along rupturing plate boundaries. Journal of Geophysical Research: Solid Earth 86 (B7), 6155–6169. https://doi.org/10.1029/JB086iB07p06155.
73. Levina E.A., Ruzhich V.V., 2015. The seismicity migration study based on space-time diagrams. Geodynamics & Tectonophysics 6 (2), 225–240. https://doi.org/10.5800/GT-2015-6-2-0178.
74. Liu H.P., Anderson D.L., Kanamori H., 1976. Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophysical Journal of the Royal Astronomical Society 47 (1), 41–58. https://doi.org/10.1111/j.1365-246X.1976.tb01261.x.
75. Liu M., Stein S., Wang H., 2011. 2000 years of migrating earthquakes in North China: how earthquakes in midcontinents differ from those at plate boundaries. Lithosphere 3 (2), 128–132. https://doi.org/10.1130/L129.1.
76. Lobkovsky L.I., 1988. Geodynamics of Spreading and Subduction Zones, and Two-Level Plate Tectonics. Nauka, Moscow, 294 p. (in Russian).
77. Lowry A.R., 2006. Resonant slow fault slip in subduction zones forced by climatic load stress. Nature 442 (7104), 802–805. https://doi.org/10.1038/nature05055.
78. Lu D., 1980. Stress wave, motion of strain wave and slow earthquake. Scientia Sinica 23 (11), 1428–1434.
79. Lukk A.A., Nersesov I.L., 1982. Variations in time of different parameters of the seismotectonic process. Izvestiya AN SSSR, Seriya Fizika Zemli (3), 10–27 (in Russian).
80. Lursmanashvili O.V., 1977. Temporal-spatial distribution of strong earthquakes in the Caucasus, and potential interrelation between earthquakes through plastic waves. Reports of the Academy of Sciences of the Georgian SSR 87 (3), 601–604 (in Russian).
81. Lyuke E.I., An V.A., Pasechnik I.P., 1988. Detection of the front of a tectonic global wave during seismic scanning of the Earth. Doklady AN SSSR 301 (3), 569–573 (in Russian).
82. Makarov P.V., 2007. Evolutionary nature of structure formation in lithospheric material: universal principle for fractality of solids. Russian Geology and Geophysics 48 (7), 558–574. https://doi.org/10.1016/j.rgg.2007.06.003.
83. Makarov P.V., Peryshkin A.Y., 2017. Slow motions as inelastic strain autowaves in ductile and brittle media. Physical Mesomechanics 20 (2), 209–221. https://doi.org/10.1134/S1029959917020114.
84. Malamud A.S., Nikolaevsky V.N., 1989. Earthquake Cycles and Tectonic Waves. Donish, Dushanbe, 142 p. (in Russian)
85. Malin P.E., Alvarez M.G., 1992. Stress diffusion along the San Andreas fault at Parkfield, California. Science 256 (5059), 1005–1007. https://doi.org/10.1126/science.256.5059.1005.
86. McLaughlin D.W., Scott A.C., 1978. Perturbation analysis of fluxon dynamics. Physical Review A 18 (4), 1652–1680. https://doi.org/10.1103/PhysRevA.18.1652.
87. McReynolds A.W., 1949. Plastic deformation waves in aluminum. Transactions of the American Institute of Mining and Metallurgical Engineers 185 (1), 32–45.
88. Melosh H.J., 1976. Nonlinear stress propagation in the Earth's upper mantle. Journal of Geophysical Research 81 (32), 5621–5632. https://doi.org/10.1029/JB081i032p05621.
89. Mikhailov D.N., Nikolaevskii V.N., 2000. Tectonic waves of the rotational type generating seismic signals. Izvestiya, Physics of the Solid Earth 36 (11), 895–902.
90. Milyukov V., Mironov A., Kravchuk V., Amoruso A., Crescentini L., 2013. Global deformations of the Eurasian plate and variations of the Earth rotation rate. Journal of Geodynamics 67, 97–105. https://doi.org/10.1016/j.jog.2012.05.009.
91. Mitlin V.S., Nikolaevsky V.N., 1990. Nonlinear diffusion of tectonic stresses. Doklady AN SSSR 315 (5), 1093–1096 (in Russian).
92. Miura S., Ishii H., Takagi A., 1989. Migration of vertical deformations and coupling of island arc plate and subducting plate. In: S.C. Cohen, P. Vanííek (Eds.), Slow deformation and transmission of stress in the Earth. Geophysical Monograph Series, vol. 49, p. 125–138. https://doi.org/10.1029/GM049p0125.
93. Mogi K., 1968. Migration of seismic activity. Bulletin of the Earthquake Research Institute 46, 53–74.
94. Molchanov O.A., 2011. Underlying mechanism of precursory activity from analysis of upward earthquake migration. Natural Hazards and Earth System Sciences 11 (1), 135–143. https://doi.org/10.5194/nhess-11-135-2011.
95. Molchanov O.A., Uyeda S., 2009. Upward migration of earthquake hypocenters in Japan, Kurile–Kamchatka and Sunda subduction zones. Physics and Chemistry of the Earth, Parts A/B/C 34 (6–7), 423–430. https://doi.org/10.1016/j.pce.2008.09.011.
96. Nason R.D., 1969. Preliminary instrumental measurements of fault creep slippage on the San Andreas fault, California. Earthquake Notes 40 (1), 7–10. https://doi.org/10.1785/gssrl.40.1.7.
97. Nersesov I.L., Lukk A.A., Zhuravlev V.I., Galaganov O.N., 1990. On propagation of strain waves in the crust of the southern regions of Central Asia. Izvestiya AN SSSR, Seriya Fizika Zemli (5), 102–112 (in Russian).
98. Nevsky M.V., 1994. Ultra-long-period strain waves at the boundaries of lithospheric plates. In: A.V. Nikolaev (Ed.), Dynamic processes in geophysical medium. Nauka, Moscow, p. 40–55 (in Russian).
99. Nevsky M.V., Artamonov A.M., Riznichenko O.Yu., 1991. Strain waves and seismicity energy. Doklady AN SSSR 318 (2), 316–320 (in Russian).
100. Nevsky M.V., Morozova L.A., Fyuz G.S., 1989. Long-period deformation waves. In: M.A. Sadovsky (Ed.), Discrete properties of geophysical medium. Nauka, Moscow, p. 18–33 (in Russian).
101. Nevsky M.V., Morozova L.A., Zhurba M.N., 1987. The effect of propagation of long-period deformation perturbations. Doklady AN SSSR 296 (5), 1090–1093 (in Russian).
102. Nielsen S., Taddeucci J., Vinciguerra S., 2010. Experimental observation of stick-slip instability fronts. Geophysical Journal International 180 (2), 697–702. https://doi.org/10.1111/j.1365-246X.2009.04444.x.
103. Nikolaevskiy V.N., 1998. Tectonic stress migration as nonlinear wave process along earth crust faults. In: T. Adachi, F. Oka, A. Yashima (Eds.), Proceedings of 4th International workshop on localization and bifurcation theory for soils and rocks (Gifu, Japan, 28 September – 2 October 1997). A.A. Balkema, Rotterdam, p. 137–142.
104. Nikolaevsky V.N., 1983. Mechanics of geomaterials and earthquakes. In: Science and technics results. Mechanics of deformed solid body. Vol. 15. VINITI, Moscow, p. 149–230 (in Russian).
105. Nikolaevsky V.N., 1995. Mathematical modeling of solitary deformation and seismic waves. Doklady AN 341 (3), 403–405 (in Russian).
106. Nikolaevsky V.N., 1996. Geomechanics and Fluid Dynamics. Nedra, Moscow, 447 p. (in Russian).
107. Nikolaevsky V.N., Ramazanov T.K., 1985. Theory of fast tectonic waves. Applied Mathematics and Mechanics 49 (3), 462–469 (in Russian).
108. Nikolaevsky V.N., Ramazanov T.K., 1986. Generation and propagation of tectonic waves along deep faults. Izvestiya AN SSSR, Seriya Fizika Zemli (10), 3–13 (in Russian).[Николаевский В.Н., Рамазанов Т.К. Генерация и распространение тектонических волн вдоль глубинных разломов // Известия АН СССР, серия Физика Земли. 1986. № 10. С. 3–13.
109. Novopashnina A.V., San'kov V.A., 2015. Migration of seismic activity in strike-slip zones: A case study of the boundary between the North American and Pacific plates. Russian Journal of Pacific Geology 9 (2), 141–153. https://doi.org/10.1134/S1819714015020050.
110. Obara K., 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296 (5573), 1679–1681. https://doi.org/10.1126/science.1070378.
111. Ohnaka M., 2013. The Physics of Rock Failure and Earthquakes. Cambridge University Press, New York, 270 p.
112. Ouchi T., Goriki S., Ito K., 1985. On the space-time pattern formation of the earthquake strain field. Tectonophysics 113 (1–2), 31–48. https://doi.org/10.1016/0040-1951(85)90109-X.
113. Peyrard M., Kruskal M.D., 1984. Kink dynamics in the highly discrete sine-Gordon system. Physica D: Nonlinear Phenomena 14 (1), 88–102. https://doi.org/10.1016/0167-2789(84)90006-X.
114. Pollitz F.F., Bürgmann R., Romanowicz B., 1998. Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science 280 (5367), 1245–1249. https://doi.org/10.1126/science.280.5367.1245.
115. Press F., Allen C., 1995. Patterns of seismic release in the southern California region. Journal of Geophysical Research: Solid Earth 100 (B4), 6421–6430. https://doi.org/10.1029/95JB00316.
116. Prokhorov A.M. (Ed.), 1983. Physical Encyclopedic Dictionary. Soviet Encyclopedia, Moscow, 928 p. (in Russian).
117. Pustovitenko B.G., Porechnova E.I., 2008. On the processes of formation of focal zones of strong earthquakes. Geophysical Journal 30 (5), 73–90 (in Russian).
118. Reuveni Y., Kedar S., Moore A., Webb F., 2014. Analyzing slip events along the Cascadia margin using an improved subdaily GPS analysis strategy. Geophysical Journal International 198 (3), 1269–1278. https://doi.org/10.1093/gji/ggu208.
119. Rice J.R., 1980. The mechanics of earthquake rupture. In: A.M. Dziewonski, E. Boschi (Eds.), Physics of the Earth's Interior. Italian Physical Society / North-Holland, Amsterdam, p. 555–649.
120. Richter E.F., 1958. Elementary Seismology. W.H. Freeman, San Francisco, 768 p.
121. Rudakov V.P., 1992. Mapping of geodeformation processes of seasonal (annual) periodicity in the dynamics of the subsoil radon field. Doklady AN 324 (3), 558–561 (in Russian).
122. Ruzhich V.V., Kocharyan G.G., Levina Е.А., 2016. Estimated geodynamic impact from zones of collision and subduction on the seismotectonic regime in the Baikal rift. Geodynamics & Tectonophysics 7 (3), 383–406 (in Russian).https://doi.org/10.5800/GT-2016-7-3-0214.
123. Rydelek P.A., Sacks I.S., 1988. Asthenospheric viscosity inferred from correlated land–sea earthquakes in north-east Japan. Nature 336 (6196), 234–237. https://doi.org/10.1038/336234a0.
124. Rydelek P.A., Sacks I.S., 1990. Asthenospheric viscosity and stress diffusion: a mechanism to explain correlated earthquakes and surface deformations in NE Japan. Geophysical Journal International 100 (1), 39–58. https://doi.org/10.1111/j.1365-246X.1990.tb04566.x.
125. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian).
126. Sanders C.O., 1993. Interaction of the San Jacinto and San Andreas fault zones, Southern California: triggered earthquake migration and coupled recurrence intervals. Science 260 (5110), 973–976. https://doi.org/10.1126/science.260.5110.973.
127. Saprygin S.M., 2013. To the problem of seismicity of the Sakhalin faults. Tikhookeanskaya Geologiya 32 (2), 73–77 (in Russian).
128. Saprygin S.M., Vasilenko N.F., Soloviev V.N., 1997. Propagation of the wave of tectonic stresses through the Eurasian plate in 1978–1983. Geologiya i Geofizika (Russian Geology and Geophysics) 38 (3), 701–709.
129. Sato K., 1989. Numerical experiments on strain migration. Journal of the Geodetic Society of Japan 35 (1), 27–36 (in Japanese with English abstract).
130. Savage J.C., 1971. A theory of creep waves propagating along a transform fault. Journal of Geophysical Research 76 (8), 1954–1966. https://doi.org/10.1029/JB076i008p01954.
131. Scholz C., 1977. A physical interpretation of the Haicheng earthquake prediction. Nature 267 (5607), 121–124. https://doi.org/10.1038/267121a0.
132. Scholz C., Molnar P., Johnson T., 1972. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism. Journal of Geophysical Research 77 (32), 6392–6406. https://doi.org/10.1029/JB077i032p06392.
133. Schwartz S.Y., Rokosky J.M., 2007. Slow slip events and seismic tremor at Circum-Pacific subduction zones. Reviews of Geophysics 45 (3), RG3004. https://doi.org/10.1029/2006RG000208.
134. Scott A.C., 2007. The Nonlinear Universe. Chaos, Emergence, Life. Springer, Berlin–Heidelberg–New York, 365 p.
135. Shapere D., 1982. The concept of observation in science and philosophy. Philosophy of Science 49 (4), 485–525. https://doi.org/10.1086/289075.
136. Shelly D.R., Beroza G.C., Ide S., 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446 (7133), 305–307. https://doi.org/10.1038/nature05666.
137. Sherman S.I., 2007. New data on regularities of fault activation in the Baikal rift system and the adjacent territory. Doklady Earth Sciences 415 (1), 794–798. https://doi.org/10.1134/S1028334X07050303.
138. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2), 83–117 (in Russian). https://doi.org/10.5800/GT-2013-4-2-0093.
139. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House “Geo”, Novosibirsk, 359 p. (in Russian).
140. Sherman S.I., Gorbunova E.A., 2008. Wave nature of activation of faults in Central Asia on the basis of seismic monitoring. Fizicheskaya Mezomekhanika (Physical Mesomechanics) 11 (1), 115–122 (in Russian).[.
141. Sidorov V.A., Kuz’min Y.O., 1989. Spatial-temporal characteristics of modern dynamics of the geophysical medium in seismically active and aseismic regions. In: M.A. Sadovsky (Ed.), Discrete properties of geophysical medium. Nauka, Moscow, P. 33–47 (in Russian).
142. Spirtus V.B., 2008. Investigation of geosolitons in the Crimea-Black Sea region in the models of FitzHugh-Nagumo type. Geophysical Journal 30 (5), 91–100 (in Russian).
143. Spirtus V.B., 2010. Possibilities of biophysical models of FitzHugh-Nagumo type in mapping of two-dimensional migration of seismicity. Geophysical Journal 32 (1), 134–143 (in Russian).
144. Spirtus V.B., 2011. Features of the dynamics of seismic activity in the models of FitzHugh-Nagumo type. Geophysical Journal 3 (2), 57–63 (in Russian).
145. Stein R.S., Barka A.A., Dieterich J.H., 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128 (3), 594–604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x.
146. Stepashko A.A., 2013. The structure of the lithospheric mantle of the Siberain craton and seismodynamics of deformation waves in the Baikal seismic zone. Geodynamics & Tectonophysics 4 (4), 387–415 (in Russian).[. https://doi.org/10.5800/GT-2013-4-4-0108.
147. Takahashi K., Seno T., 2005. Diffusion of crustal deformation from disturbances arising at plate boundaries – a case of the detachment beneath the Izu Peninsula, central Honshu, Japan. Earth, Planets and Space 57 (10), 935–941. https://doi.org/10.1186/BF03351873.
148. Takemoto S., 1995. Recent results obtained from continuous monitoring of crustal deformation. Journal of Physics of the Earth 43 (4), 407–420. https://doi.org/10.4294/jpe1952.43.407.
149. Trofimenko S.V., Bykov V.G., Merkulova T.V., 2017. Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate. Journal of Seismology 21 (2), 277–286. https://doi.org/10.1007/s10950-016-9600-x.
150. Vasil'ev V.A., Romanovskii Y.M., Yakhno V.G., 1979. Autowave processes in distributed kinetic systems. Soviet Physics Uspekhi 22 (8), 615–639. https://doi.org/10.1070/PU1979v022n08ABEH005591.
151. Vikulin A.V., Ivanchin A.G., 1998. Rotational model of the seismic process. Tikhookeanskaya Geologiya 17 (6), 95–103 (in Russian).
152. Vikulin A.V., Melekestsev I.V., Dinara A.R., Ivanchin A.G., Vodinchar G.M., Dolgaya A.A., Gusyakov V.K., 2012. Information-computational system for modeling of seismic and volcanic processes as a foundation of research on wave geodynamic phenomena. Computational Technologies 17 (3), 34–54 (in Russian).
153. Vikulin A.V., Vodinchar G.M., Gusyakov V.K., Melekestsev I.V., Akmanova D.R., Dolgaya A.A., Osipova N.A., 2011. Migration of seismic and volcanic activity in the stress-state zones of the most geodynamically active megastructures of the Earth. Bulletin of Kamchatka State Technical University 17, 5–15 (in Russian).[Викулин А.В., Водинчар Г.М., Гусяков В.К., Мелекесцев И.В., Акманова Д.Р., Долгая А.А., Осипова Н.А. Миграция сейсмической и вулканической активности в зонах напряженного состояния вещества наиболее геодинамически активных мегаструктур Земли // Вестник КамчатГТУ. 2011. Вып. 17. С. 5–15.
154. Vilkovich E.V., Guberman Sh.A., Keilis-Borok V.I., 1974. Waves of tectonic strain in large faults. Doklady AN SSSR 219 (1), 77–80 (in Russian).
155. Vilkovich E.V., Shnirman M.G., 1982. Waves of migration of epicenters (examples and models). In: V.I. Keilis-Borok, A.L. Levshin (Eds.). Mathematical models of the Earth's structure and earthquake prediction. Computational Seismology, vol. 14. Nauka, Moscow, p. 27–37 (in Russian).
156. Wang S., Zhang Z., 2005. Plastic-flow waves (“slow-waves”) and seismic activity in Central-Eastern Asia. Earhquake Research in China 19 (1), 74–85.
157. Whitham G., 1977. Linear and Nonlinear Waves. Mir, Moscow, 622 p. (in Russian).
158. Yamashina K., 1989. Volcanic eruptions and crustal deformation in subduction zones. Journal of the Geodetic Society of Japan 35 (2), 257–261.
159. Yoshida A., 1988. Migration of seismic activity along intraplate seismic belts in the Japanese islands. Tectonophysics 145 (1–2), 87–99. https://doi.org/10.1016/0040-1951(88)90318-6.
160. Yoshioka S., Matsuoka Y., Ide S., 2015. Spatiotemporal slip distributions of three long-term slow slip events beneath the Bungo Channel, southwest Japan, inferred from inversion analyses of GPS data. Geophysical Journal International 201 (3), 1437–1455. https://doi.org/10.1093/gji/ggv022.
161. Žalohar J., 2018. The Omega-Theory: A New Physics of Earthquakes. Developments in Structural Geology and Tectonics, vol. 2. Elsevier, Amsterdam, 558 p.
162. Zuev L.B., Barannikova S.A., Zhigalkin V.M., Nadezhkin M.V., 2012. Laboratory observation of slow movements in rocks. Journal of Applied Mechanics and Technical Physics 53 (3), 467–470. https://doi.org/10.1134/S0021894412030200.
163. Zuev L.B., Danilov V.I., 2003. Slow autowave processes during deformation of solids. Fizicheskaya Mezomekhanika (Physical Mesomechanics) 6 (1), 75–94 (in Russian).
164. Zykov V.S., 1984. Modeling of Wave Processes in Excitable Media. Nauka, Moscow, 168 p. (in Russian).
Review
For citations:
Bykov V.G. Prediction and observation of strain waves in the Earth. Geodynamics & Tectonophysics. 2018;9(3):721-754. (In Russ.) https://doi.org/10.5800/GT-2018-9-3-0369