Tectonophysical approach to the analysis of geological and geophysical data on gas-condensate deposits with the complex platform cover
https://doi.org/10.5800/GT-2018-9-3-0364
Abstract
The article presents the results of the tectonophysical approach to the analysis of stress fields and the structure of gas–condensate deposits with the complex platform cover. The discussed case is the Kovykta license area (LA) in Eastern Siberia, Russia. In the upper part of the cross section, the network of fault zones was identified from the relief lineaments and structural data. The dynamic conditions for faulting (compression, extension, and strike-slip) were reconstructed by the paragenetic analysis. The state of crustal stresses in the study area was studied by tectonophysical modeling using gelatin as an optically active material. The applied method was successful in distinguishing between the zones of faults in the platform cover, which differ in the degree of their activity in the specified stress fields. The lower part of the cross section in the NE segment of the Kovykta LA is considered as an example of the tectonophysical interpretation of the electrical and seismic survey data in order to identify the fault zones and reconstruct the corresponding stress fields. Based on the synthesis of the analyzed data, it is revealed that the deposits like the Kovykta gas condensate field (GCF) show the zone-block structure of the platform cover formed under the influence of several stress fields closely associated with the stages of tectogenesis in the adjacent mobile belts. The next objective is to enhance the tectonophysical approach in order to develop a hierarchical model of the GCF zone-block structure, which details need to be known for improving the prediction of sites with the complicated stress-strain state of rocks and mitigating the risks associated with drilling exploration and production wells.
About the Authors
K. Zh. SeminskyRussian Federation
Konstantin Zh. Seminsky, Doctor of Geology and Mineralogy, Deputy Director
128 Lermontov street, Irkutsk 664033
V. A. Sankov
Russian Federation
Vladimir A. Sankov, Candidate of Geology and Mineralogy, Head of Laboratory, Institute of the Earth’s Crust, Siberian Branch of RAS
128 Lermontov street, Irkutsk 664033; 3 Lenin street, Irkutsk 664003
V. V. Ogibenin
Russian Federation
Valery V. Ogibenin, Candidate of Geology and Mineralogy, Head of the Engineering and Technical Center
70 Gertsen Street, Tyumen 625000
Yu. P. Burzunova
Russian Federation
Yulia P. Burzunova, Candidate of Geology and Mineralogy, Lead Engineer
128 Lermontov street, Irkutsk 664033
A. I. Miroshnichenko
Russian Federation
Andrei I. Miroshnichenko, Candidate of Geology and Mineralogy, Senior Researcher
128 Lermontov street, Irkutsk 664033
E. A. Gorbunova
Russian Federation
Ekaterina A. Gorbunova, Candidate of Geology and Mineralogy, Junior Researcher
128 Lermontov street, Irkutsk 664033
I. V. Gorlov
Russian Federation
Ivan V. Gorlov, Deputy Head of the Engineering and Technical Center
70 Gertsen Street, Tyumen 625000
A. S. Smirnov
Russian Federation
Aleksander S. Smirnov, Candidate of Geology and Mineralogy, Head of Section of the Engineering and Technical Center
70 Gertsen Street, Tyumen 625000; 38 Volodarsky street, Tyumen 625000
A. G. Vakhromeev
Russian Federation
Andrei G. Vakhromeev, Doctor of Geology and Mineralogy, Head of Laboratory
128 Lermontov street, Irkutsk 664033
I. V. Buddo
Russian Federation
Igor V. Buddo, Candidate of Geology and Mineralogy, Researcher
128 Lermontov street, Irkutsk 664033
References
1. Aarre V., Astratti D., Dayyni T.N., Mahmoud S.L., Clark A., Stellas M., Stringer J., Toelle B., Vejbaek O., White G., 2012. Seismic detection of subtle faults and fractures. Oilfield Review 24 (2), 28–43.
2. Bahorich M., Farmer S., 1995. 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube. The Leading Edge 14 (10), 1053–1058. https://doi.org/10.1190/1.1887523.
3. Brutton T., Cahn D.V., Duc N.V., Gillespie P., Hunt D., Li B., Marcinew R., Ray S., Montaron B., Nelson R., Shroderbek D., Sonneland L., 2006. The nature of naturally fractured reservoirs. Oilfield Review 18 (2), 4–23.
4. Buddo I.V., Baryshev L.A., Agafonov Y.A., Sharlov M.V., Pospeev A.V., 2013. Joint interpretation of seismic and TEM data from the Kovykta gas-condensate field, East Siberia. In: 75th EAGE Conference & Exhibition incorporating SPE EUROPEC. London. https://doi.org/10.3997/2214-4609.20130275.
5. Buddo I.V., Baryshev L.A., Pospeev A.V., Murzina E.V., Agafonov Y.A., 2012. Experience of seismic (CDP) and electromagnetic (TEM) joint data interpretation on the example of Kovykta gas condensate field. In: Geobaikal 2012 – 2nd EAGE International Research and Application Conference on Electromagnetic Research Methods and Integrated Geophysical Data Interpretation. Irkutsk (in Russian). https://doi.org/10.3997/2214-4609.20143511.
6. Buddo I.V., Misurkeeva N.V., Agafonov Y.A., Smirnov A.S., 2016. Optimal sequence of gas field investigations from the Kovycta gas-condensate field. In: 7th Saint Petersburg International Conference & Exhibition. https://doi.org/10.3997/2214-4609.201600167.
7. Buddo I.V., Pospeev A.V., Agafonov Yu.A., 2011. Some aspects of detecting reservoirs in the sedimentary cover of the southern areas of the Siberian platform based on the non-stationary electromagnetic sounding data. In: Proceedings of the All-Russia M.N. Berdichevsky and L.L. Vanyan School-Seminar on Electromagnetic Sounding of the Earth. Book 2. St. Petersburg, p. 170–173 (in Russian).
8. Canh D.V., Que N.V., Duc N.V., Gillespie P., Hunt D., Li B., Marcinew R., Ray S., Montaron B., Nelson R., Schoderbek D., Sonneland L., 2006. The nature of naturally fractured reservoirs. Oilfield Review 18 (2), 4–23.
9. Chopra S., Marfurt K.J., 2005. Seismic attributes – A historical perspective. Geophysics 70 (5), 3SO–28SO. https://doi.org/10.1190/1.2098670.
10. Chopra S., Marfurt K.J., Mai H.T., 2009. Using automatically generated 3D rose diagrams for correlation of seismic fracture lineaments with similar lineaments from attributes and well log data. First Break 27 (10), 37–42. https://doi.org/10.3997/1365-2397.2009016.
11. Delvaux D., 1993. The TENSOR program for reconstruction: examples from East African and the Baikal rift systems. Terra Abstracts (Abstr. suppl. Terra Nova) 5 (1), 216.
12. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko A., Ruzhich V., Sankov V., 1997. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting. Tectonophysics 282 (1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.
13. Dubrovin M.A., 1979. Salt Tectonics of the Upper Lena Basin in the Siberian platform. Nauka, Siberian Branch, Novosibirsk, 94 p. (in Russian).
14. Freund R., 1974. Kinematics of transform and transcurrent faults. Tectonophysics 21 (1–2), 93–134. https://doi.org/10.1016/0040-1951(74)90064-X.
15. Friedman M., Handin J., Logan J.M., Min K.D., Stearns D.W., 1976. Experimental folding of rocks under confining pressure: Part III. Faulted drape folds in multilithologic layered specimens. Geological Society of America Bulletin 87 (7), 1049–1066. https://doi.org/10.1130/0016-7606(1976)87<1049:EFORUC>2.0.CO;2.
16. Gatinsky Y.G., Rundquist D.V., 2004. Geodynamics of Eurasia: plate tectonics and block tectonics. Geotectonics 38 (1), 1–16.
17. Glukhmanchuk E.D., Krupitskii V.V., Leontievskii A.V., 2016. The reason for discrepancy between deposit geological model and deposit production results. Geologiya Nefti i Gaza (Oil and Gas Geology) (1), 45–51 (in Russian).
18. Glukhmanchuk E.D., Vasilevskiy A.N., 1998. Method of detailed analysis of the deformation field structure from seismic data and some results of its application in the fields of West Siberia. In: Geophysical methods of studying the Earth's crust. SB RAS Publishing House, Novosibirsk, p. 131–140 (in Russian).
19. Glukhmanchuk E.D., Vasilevskiy A.N., 2013. Description of fracture zones based on the structural inhomogeneity of the reflector deformation field. Russian Geology and Geophysics 54 (1), 82–86. https://doi.org/10.1016/j.rgg.2012.12.007.
20. Gogonenkov G.N., Timurziev A.I., 2010. Strike-slip faults in the West Siberian basin: implications for petroleum exploration and development. Russian Geology and Geophysics 51 (3), 304–316. https://doi.org/10.1016/j.rgg.2010.02.007.
21. Gorlov I.V., Smirnov A.S., Ignatiev S.F., Vakhromeev A.R., Pospeev A.V., Misyurkeeva N.V., Agafonov Yu.A., Buddo I.V., 2016. New potential gas object in the Cambrian deposits of the Kovykta gas condensate field. In: GeoBaikal-2016. Irkutsk (in Russian). https://doi.org/10.3997/2214-4609.201601706.
22. Guiraud M., Laborde O., Philip H., 1989. Characterisation of various types of deformation and their corresponding deviatoric stress tensor using microfault analysis. Tectonophysics 170 (3–4), 289–316. https://doi.org/10.1016/0040-1951(89)90277-1.
23. Hancock P.L., 1985. Brittle microtectonics: principles and practice. Journal of Structural Geology 7 (3–4), 437–457. https://doi.org/10.1016/0191-8141(85)90048-3.
24. Harding T.P., 1974. Petroleum traps associated with wrench faults. AAPG Bulletin 58 (7), 1290–1304.
25. Harding T., Lowell J.D., 1979. Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces. AAPG Bulletin 63 (7), 1016–1058.
26. Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeß D., Müller B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482 (1–4), 3–15. https://doi.org/10.1016/j.tecto.2009.07.023.
27. Il'in A.I., Vakhromeev A.G., Misyurkeeva N.V., Buddo I.V., Agafonov Yu.A., Pospeev A.V., Smirnov A.S., Gorlov I.V., 2016. New approach to the prediction of anomalously high formation pressure in the carbonate rapa-bearing Cambrian reservoirs at the Kovykta LA. In: GeoBaikal-2016. Irkutsk (in Russian). https://doi.org/10.3997/2214-4609.201601692.
28. Khromova I.Yu., 2008. Migration of duplex waves – the method for mapping fractured zones of tectonic genesis. Geologiya Nefti i Gaza (Oil and Gas Geology) (3), 37–47 (in Russian).
29. Kim Y.S., Peacock D.C., Sanderson D.J., 2004. Fault damage zones. Journal of Structural Geology 26 (3), 503–517. https://doi.org/10.1016/j.jsg.2003.08.002.
30. Levi K.G., Kulchitsky A.A., 1981. Planation surface in the northeastern Baikal rift zone. In: Relief and Quaternary deposits of the Stanovoy upland. Nauka, Moscow, р. 19–35 (in Russian).
31. Logachev N.A. (Ed.), 1984. Map of Neotectonics of Pribaikalie and Transbaikalia. Scale 1:2500000. IEC SB RAS, Irkutsk (in Russian).
32. Malykh A.V., 1985. Fields of tectonic stresses in the folds of the Nepa and Sosninskaya fold zones in the southern Siberian platform. Geologiya i Geofizika (Soviet Geology and Geophysics) 26 (6), 31–37 (in Russian).[
33. Mandl G., 1988. Mechanics of Tectonic Faulting: Models and Basic Concepts. Elsevier, Amsterdam, 407 c.
34. Mats V.D., Ufimtsev G.F., Mandelbaum M.M., Alakshin A.M., Pospeev A.V., Shimaraev M.N., Khlystov O.M., 2001. Cenozoic of the Baikal Rift Basin: Structure and Geological History. Geo Branch, SB RAS Publishing House, Novosibirsk, 252 p. (in Russian).
35. Melnikova V.I., Radziminovich N.A., 1998. Mechanisms of action of earthquake foci in the Baikal region over the period 1991–1996. Geologiya i Geofizika (Russian Geology and Geophysics) 39 (11), 1598–1607.
36. Mendry Ya.V., 2013. Attribute analysis of seismic data for mapping zones of fracturing. Zbіrnik Naukovikh Pratz Ukr. DGRІ (4), 42–51 (in Russian).
37. Mendry Ya.V., Tyapkin Yu.K., 2012. Development of coherence calculation technology based on improved seismic recording models. Geophysical Journal 34 (3), 102–115 (in Russian.
38. Misyurkeeva N.V., Pospeev A.V., Vakhromeev A.G., Gorlov I.V., Smirnov A.S., Ignatiev S.F., Agafonov Yu.A., Buddo I.V., 2016. On evaluating the potential of the Bokhan horizon in the Kovykta gas condensate field. In: GeoBaikal-2016. Irkutsk (in Russian).[https://doi.org/10.3997/2214–4609.201601712.
39. Mogilev B.A., 1978. Geological Map of the USSR. Scale 1:200000. Angara-Lena series. Sheet N-48-KhP. Explanatory Note. Moscow, 82 p. (in Russian).
40. Mushin I.A., Korol’kov Yu.S., Chernov A.A., 2001. Identification and Mapping of Disjunctive Dislocations by Methods of Prospecting Geophysics. Nauchny Mir, Moscow, 120 p. (in Russian).
41. Naylor M.A., Mandl G.T., Supesteijn C.H.K., 1986. Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology 8 (7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2.
42. Nezhdanov A.A., Ogibenin V.V., Gorsky O.M., Mitrofanov A.D., Korobeinikov A.A., Tryasin E.Yu., 2012. Determination of the natural fracturing of oil and gas condensate fields of the Yamal-Nenets Autonomous District on the basis of processing and interpretation of remote sensing data. Vesti Gazovoy Nauki (News of Gas Science) (1), 167–181 (in Russian).
43. Osokina D.N., Tsvetkova N.Y., 1979. Modeling method of local stress fields in the vicinity of tectonic fractures and in earthquake foci. In: A.S. Grigoriev, D.N. Osokina (Eds.), Stress and strain fields of the lithosphere. Nauka, Moscow, p. 139–162 (in Russian).
44. Park R.G., 1997. Foundations of Structural Geology. Chapman & Hall, London, 202 p.
45. Pedersen S.I., Randen T., Sonneland L., Steen O., 2002. Automatic fault extraction using artificial ants. In: 72nd SEG Annual Meeting, Salt Lake City, Utah, USA (October 6–11, 2002). Expanded Abstracts. Salt Lake City, p. 512–515.
46. Petit C., Déverchère J., Houdry F., Sankov V.A., Melnikova V.I., Delvaux D., 1996. Present‐day stress field changes along the Baikal rift and tectonic implications. Tectonics 15 (6), 1171–1191. https://doi.org/10.1029/96TC00624.
47. Pospeev A.V., Buddo I.V., Agafonov Yu.A., Kozhevnikov N.O., 2010. Identification of reservoirs in the section of the sedimentary cover of the southern Siberian platform from sounding data by formation of an electromagnetic field in the near zone. Geofizika (Geophysics) (6), 47–52 (in Russian).
48. Ryazanov G.V., 1973. Morphology and Genesis of Folds in the Nepa zone. Nauka, Novosibirsk, 88 p. (in Russian).
49. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian).
50. Sankov V.A., Dobrynina A.A., 2018. Active faulting in the Earth’s Crust of the Baikal rift system based on the earthquake focal mechanisms. In: S. D'Amico (Ed.), Moment tensor solutions. Springer, Cham, p. 599–618. https://doi.org/10.1007/978-3-319-77359-9_27.
51. San'kov V.A., Miroshnichenko A.I., Levi K.G., Lukhnev A., Melnikov A.I., Delvaux D., 1997. Cenozoic stress field evolution in the Baikal rift zone. Bulletin du Centre de Recherches Elf Exploration Production 21 (2), 435–455.
52. Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Byzov L.M., Lebedeva M.A., 2008. Coupling of late cenozoic faulting of the Siberian platform margin and Baikal rifting. Doklady Earth Sciences 419 (2), 428–431 https://doi.org/10.1134/S1028334X08030161.
53. Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Byzov L.M., Lebedeva M.A., Sankov A.V., Dobrynina А.А., Kovalenko S.N., 2017. Late Cenozoic faulting and the stress state in the south-eastern segment of the Siberian platform. Geodynamics & Tectonophysics 8 (1), 81–105 (in Russian). https://doi.org/10.5800/GT-2017-8-1-0233.
54. Seminskii K.Zh., 2008. Hierarchy in the zone-block lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics 49 (10), 771–779. https://doi.org/10.1016/j.rgg.2007.11.017.
55. Seminsky K.Zh., 1990. General regularities of the dynamics of structure formation in large strike-slip zones. Geologiya i Geofizika (Soviet Geology and Geophysics) 31 (4), 14–23 (in Russian).
56. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Geo Branch, Publishing House of SB RAS, Novosibirsk, 243 p. (in Russian).
57. Seminsky K.Zh., 2014. Specialized mapping of crustal fault zones. Part 1: Basic theoretical concepts and principles. Geodynamics & Tectonophysics 5 (2), 445–467 (in Russian). https://doi.org/10.5800/GT-2014-5-2-0136.
58. Seminsky K.Zh., 2015. Specialized mapping of crustal fault zones. Part 2: Main stages and prospects. Geodynamics & Tectonophysics 6 (1), 1–43 (in Russian). https://doi.org/10.5800/GT-2015-6-1-0170.
59. Seminsky K.Zh., Gladkov A.S., Vakhromeev A.G., Cheremnykh A.V., Bobrov A.A., Kogut E.I., 2008. Faults and seismicity of the south of Siberian platform: features of display at different scale levels. Litosfera (Lithosphere) (4), 3–21 (in Russian).
60. Seminsky K.Zh., Seminsky Zh.V., 2016. Special Mapping of the Crustal Fault Zones, and Its Possibilities in Studying the Structural Control of Kimberlites in the Alakit-Markha Field, Yakutian Diamond Province. Publishing house of the Irkutsk State Technical University, Irkutsk, 204 p. (in Russian).
61. Seredkina A.I., Melnikova V.I., Gileva N.A., Radziminovich Y.B., 2015. The Mw 4.3 January 17, 2014, earthquake: very rare seismic event on the Siberian platform. Journal of Seismology 19 (3), 685–694. https://doi.org/10.1007/s10950-015-9487-y.
62. Sherman S.I., Bornyakov S.А., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modeling Results). Nauka, Novosibirsk, 110 p. (in Russian).
63. Sherman S.I., Dneprovsky Yu.I., 1989. Fields of Crustal Stresses and Geological and Geophysical Methods of Their Studies. Nauka, Novosibirsk, 158 p. (in Russian).
64. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 1999. Destructive zones and fault-block structures of Central Asia. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 18 (2), 41–53 (in Russian).
65. Sizykh V.I., 2001. Sharyazh-Thrust Tectonics of the Margins of Ancient Platforms. SB RAS Publishing House, Novosibirsk, 154 p. (in Russian).
66. Skvortsov A.A., Kuleshov V.E., 2014. Identification of the systems of natural fracturing from 3 D seismic modeling of the carbonate reservoir (case of the Shchelyaur deposit). Neftegazovoe Delo (Oil and Gas Business) (6), 242–259 (in Russian).
67. Smirnov A.S., Gorlov I.V., Yaitsky N.N., Gorsky O.M., Ignatiev S.F., Pospeev A.V., Vakhromeev A.G., Agafonov Yu.A., Buddo I.V., 2016. Integration of geological and geophysical data – a way to create a reliable model of the Kovykta gas condensate field. Geologiya Nefti i Gaza (Oil and Gas Geology) (2), 56–66 (in Russian).
68. Sylvester A.G., 1988. Strike-slip faults. Geological Society of America Bulletin 100 (11), 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2.
69. Tchalenko J.S., 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin 81 (6), 1625–1640. https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD2.0.CO;2.
70. Tsobin V.A., Adamov E.A., 1978. Geological Map of the USSR. Scale 1:200000. Angara-Lena Series. Sheet N-48-XI. Explanatory Note. Moscow, 65 p. (in Russian).
71. Ufimtsev G.F., Shchetnikov A.A., Myaktova V.V., Filinov I.A., 2005. Geomorphology and morphotectonics of the Lena-Angara plateau. Geomorfologiya (Geomorphology) (2), 97–106 (in Russian).
72. Vakhromeev A.G., Khokhlov G.A., 1988. Prospects for the prediction of rapa zones in the Verkholensky (Zhigalovsky) gas-bearing area of the Irkutsk region. In: Features of the technology for drilling and completion of wells in East Siberia and Yakutia. Vostochno-Sibirskaya Pravda Publishing House, Irkutsk, p. 140–142 (in Russian).
73. Vakhromeev A.G., Myshevsky N.V., Khokhlov G.A., 2006. Anomalously high formation pressure as a factor complicating the development of hydrocarbon deposits in East Siberia. In: Modern geodynamics and hazardous natural processes in Central Asia: Fundamental and Applied Aspects. Issue 5. IEC SB RAS, Irkutsk, p. 98–119 (in Russian).[.
74. Vakhromeev A.G., Sverkunov S.A., Ilyin A.I., Pospeev A.V., Gorlov I.V., 2016. Mining and geological conditions of drilling brine productive zones with abnormally high reservoir pressure in natural Cambrian reservoirs of the Kovykta gas condensate field. Proceedings of the Siberian Department of the Section of Earth Sciences of the Russian Academy of Natural Sciences. Geology, Exploration and Development of Mineral Deposits (2), 74–87 (in Russian).
75. Wilcox R.E., Harding T.P., Seely D.R., 1973. Basic wrench tectonics. AAPG Bulletin 57 (1), 74–96.
76. Wiprut D., Zoback M.D., 2000. Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology 28 (7), 595–598. https://doi.org/10.1130/0091-7613(2000)28<595:FRAFFA>2.0.CO;2.
77. Zamaraev S.M., Adamenko O.M., Ryazanov G.V., Kulchitsky A.A., Adamenko R.S., Vikentieva N.M., 1976. Structure and History of the Development of the Predbaikalsky foredeep. Nauka, Moscow, 134 p. (in Russian).
78. Zeng L., Wang H., Gong L., Liu B., 2010. Impacts of the tectonic stress field on natural gas migration and accumulation: A case study of the Kuqa Depression in the Tarim Basin, China. Marine and Petroleum Geology 27 (7), 1616–1627. https://doi.org/10.1016/j.marpetgeo.2010.04.010.
79. Zolotarev A.G., 1967. New data on neotectonics and its expression in morphostructures of the southeastern part of the Central Siberian plateau and the Baikal mountain region. In: Tectonic movements and the most recent structures of the Earth's Crust. Proceedings of the Meeting on Neotectonics Problems. Nedra, Moscow, р. 399–393 (in Russian).
80. Zolotarev A.G., Khrenov P.M. (Eds.), 1979. Map of the Most Recent Tectonics of the Southern East Siberia. Scale 1:1500000. VostSibNIIGGiMS, Irkutsk (in Russian).
Review
For citations:
Seminsky K.Zh., Sankov V.A., Ogibenin V.V., Burzunova Yu.P., Miroshnichenko A.I., Gorbunova E.A., Gorlov I.V., Smirnov A.S., Vakhromeev A.G., Buddo I.V. Tectonophysical approach to the analysis of geological and geophysical data on gas-condensate deposits with the complex platform cover. Geodynamics & Tectonophysics. 2018;9(3):587-627. (In Russ.) https://doi.org/10.5800/GT-2018-9-3-0364