INTERBLOCK ZONES IN THE CRUST OF THE SOUTHERN REGIONS OF EAST SIBERIA: TECTONOPHYSICAL INTERPRETATION OF GEOLOGICAL AND GEOPHYSICAL DATA
https://doi.org/10.5800/GT-2013-4-3-0099
Abstract
The zone-block structure of the lithosphere is represented by a hierarchically organized pattern of stable blocks and mobile zones which border such blocks and contain highly dislocated geological medium (Fig. 1). Today, different specialists adhere to different concepts of blocks and zones, which are two main elements of the lithosphere structure. Differences are most significant in determinations of ‘interblock zones’ that are named as deformation / destructive / contact / mobile / fracture zones etc. due to their diversity in different conditions of deformation. One of the most effective approaches to studying the zone-block structure of the lithosphere is a combination of geological and geophysical studies of interblock zones tectonic features on various scales, which can make it possible to reveal the most common patterns of the interblock zones, general regularities of their development and relationships between the interblock zones.
The main objectives of our study were (1) to identify the zone-block structure of the crust in the southern regions of East Siberia from tectonophysical analysis of geological and geophysical surveys conducted on four different scales along the 500 km long Shertoy-Krasny Chikoy transect crossing the marginal segment of the Siberian block, the Baikal rift and the Transbaikalian block (Fig. 2); (2) to clarify structural features of the central part of the Baikal rift (representing the tectonic type of interblock extension zone) by applying new research methods, such as radon emanation survey, to the Shertoy-Krasny Chikoy transect and using the previously applied methods, such as magnetotelluric sounding, on a smaller scale; and (3) to study manifestation of interblock zones of various ranks in different geological and geophysical fields, to reveal common specific features of their structural patterns for the upper crust, and to establish regularities of hierarchic and spatial relationships between the interblock zones.
On the global scale, the object of our study at the Shertoy-Krasny Chikoy transect was the Baikal interblock zone (Fig. 2, 15, and 16). On the trans-regional scale, large fault zones were studied (Fig. 6, 11, and 14). On the regional and local scales, the objects of our study were systems of faults and fractures of various ranks which were active at the late Cenozoic stage of tectogenesis (Fig. 4, and 5). The set of geological and geophysical surveys included application of methods for identification of faults and fractures using different criteria, with account of the fact that clusters of such structures are indicative of the interblock zones of the crust. We used structural geological methods for studying faults and fractures, morphostructural analysis (including interpretation of satellite images), self-potential (SP) and resistivity profiling, magnetotelluric (MT) sounding, radon emanation survey, and hydrogeological studies of water occurrences. The region of Lake Baikal is one of the most studied geodynamically active regions of Russia; therefore, published data from previous studies of the Baikal region were used to interpret the data obtained by the authors.
By interpreting the obtained data from the unified tectonophysical positions, the three objectives were met, and the following research results were stated:
1. The principal specific features of the geological structure of the crust along the Shertoy-Krasny Chikoy transect are specified. It is established that the divisibility pattern complies with tectonophysical definitions of the hierarchically organized zone-block structure of the lithosphere (Fig. 2, 6, 11, 14, and 16). It is clearly evidenced, within the depth interval from the near-surface to about 30 km, that the crust is split into slightly broken blocks that are in contact with each other via wide zones that are marked by higher fracturing and fluid saturation. To a first approximation, such blocks are shaped as subhorizontal plates in the stable southern regions of East Siberia (e.g., the southern part of the Siberian platform) and subvertical plates in the areas being active in the Cenozoic (e.g., the Baikal rift). Within the framework of the given model of the zone-block structure of the southern regions of East Siberia, strict hierarchical subordination is established that manifests in spatial relationships of interblock zones (the closed network of the zones, imbedded blocks); its quantitative characteristics are stated at the global, trans-regional and three regional levels (Table 1, Fig. 2, Fig. 22). Average sizes of the zones, that were crossed by the transect, are estimated from the depth of their penetration into the crust; it is shown that Scale Invariant 2.2 (previously set for estimates of square areas) is valid also for the analysis of volumes of interblock structures. Detailed observations show that interblock structures are usually wider towards the earth surface; in the 1st order active zones, dimensions of the interblock structures may exceed dimensions of the adjacent, slightly disturbed blocks of the corresponding hierarchic level (Fig. 6, 11, 14, and 16). This pattern is typical of the actively developing Baikal rift and determines specific features of its structure with regards to the zone-block divisibility of the lithosphere.
2. The Baikal interblock zone is a global one in the hierarchy of the zone-block structure of Asia. It develops under tension conditions at the contact of the Siberian and Trans-Baikal lithospheric blocks (Fig. 16). Within the transect, the width of the Baikal interblock zone is about 200 km. At the trans-regional level of the hierarchy, the zone is comprised of the Obruchevsky, Chersky-Barguzin and Dzhida-Vitim fault systems (Fig. 6, 11, and 14). The first two of them act as the western and eastern borders of the subsided block of the Baikal basin and thus constitute the major area of the lithospheric extension. The second area is the Dzhida-Vitim fault system separating from the first one by the uplifted Khamar-Daban block; within the transect, it is morphologically manifested by the Ivolgino-Uda basin (Fig. 11, and 16). In this area, due to localization of deformation in the South Baikal basin, the process of fracturing is less pronounced, although indicators of the recent activity, such as seismicity, heat flow, gas emanations etc., are clearly at maximums over the Dzhida-Vitim zone, which makes it evident that this zone is distinguished from the adjacent Transbaikalian block (Fig. 15). Each of the three trans-regional fault systems has a width of about 50 km and consists of regional interblock zones that undergo the intensive development within the Baikal area wherein the crust is subject to extension (Fig. 6, 11, and 14). By their internal patterns, they represent zones of major faults: the Prikhrebtovy, Primorsky, and Morskoy faults constituting the Obruchevsky fault system, as well as the Bortovoy and Deltovy faults from the Chersky-Barguzin system. The Prikhrebtovy and Bortovoy fault zones are located at the periphery of the systems and flatten out in the direction of the rift axis from depths of about 20 km, and, consequently, the area of the most intensive deformations in the Pribaikalie has a ‘bowl-shaped’ profile (Fig. 16). Due to the intensive fracturing occurring in the conditions of the overall stretching of the crust, this area is saturated with meteoric water and deep fluids penetrating into the regional fault zones and partially into the adjacent blocks also belonging to the internal pattern of the Obruchevsky and Chersky-Barguzin fault systems. The block represented by the Baikal basin (located between these two fault systems) is no exception as its central part is disturbed by the regional-scale zone wherein fluidization is most intense due to localization of deformation (Fig. 8, and 16). The zone of the anomalously low resistivity has a width of about 7-10 km and shows no trend to any drastic narrowing in the lower crust, which gives grounds to consider it as the main channel for migration of deep fluids towards the surface.
3. As shown by experiences gained during the research at the Shertoy-Krasny Chikoy transect, in East Siberia the applied methods and techniques are informative for identification and analyses of the internal patterns of the interblock zones of different ranks. The methods and techniques used in studies along the transect complement each other and make it possible to investigate different properties of interblock zones. In general, in comparison with blocks, the zones are distinguished by the relief lowering, anomalous water exchange conditions, gas anomalies that are positive and complex in shape, and low resistivity values both near the surface and at depth (Fig. 3–6, 8, and 11–16). Integrated interpretation of the data is challenging: when applied separately, the methods and techniques reveal various specific features of interblock zone that differ in the degree of heterogeneity of the internal patterns depending on conditions of their formation and development. At the current stage of research, the boundaries of the interblock zones can be determined, to a first approximation, from average positions of anomalies, to determine which the deviations of measured parameters from their mean values are used.
In the future, it is necessary to conduct detailed surveys using the above geological and geophysical methods in order to reveal specific features of manifestation of the interblock zones that differ in (1) kinematic types, ranks and degrees of activity, (2) properties of infill material and the surrounding medium, and (3) impacts of external factors (e.g., those of the planetary level). Upon comparison of results of such studies, it will be possible to update and improve the proposed generalized models accounting for manifestation of the interblock zones in the geological and geophysical fields (Fig. 17, 20, and 21) and to ensure that the methods and techniques used can be applied more effectively for identification of interblock zones in regions where rock outcrops are poor or lacking.
About the Authors
K. Zh. SeminskyRussian Federation
Doctor of Geology and Mineralogy, Head of Laboratory of Tectonophysics
N. O. Kozhevnikov
Russian Federation
Doctor of Geology and Mineralogy, Chief Researcher of Laboratory of Geoelectrics
A. V. Cheremnykh
Russian Federation
Candidate of Geology and Mineralogy, Senior Researcher
E. V. Pospeeva
Russian Federation
Doctor of Geology and Mineralogy, Lead Researcher of Laboratory of Geoelectrics
A. A. Bobrov
Russian Federation
Candidate of Geology and Mineralogy, Junior Researcher
V. V. Olenchenko
Russian Federation
Candidate of Geology and Mineralogy, Senior Researcher of Laboratory of Geoelectrics
M. A. Tugarina
Russian Federation
Candidate of Geology and Mineralogy, assistant professor
V. V. Potapov
Russian Federation
Candidate of Geology and Mineralogy, Researcher of Laboratory of Geoelectrics
R. M. Zaripov
Russian Federation
graduate student
A.S. Cheremnykh
Russian Federation
graduate student
References
1. Albul S.P., Babushkin V.D., Borevsky B.V., Verigin N.N., Volod'ko I.F., Ivanov V.N., Kerkis E.E., Kiryukhin V.A., Klimentov P.P., Kononov V.M., Konoplyantsev A.A., Kruglikov N.M., Lekhtimyaki E.V., Maksimov V.M., Marshalov A.F., Matveev B.K., Matveeva E.S., Novozhylov V.N., Ogilvi A.A., Odnopozov V.L., Onin N.M., Ostroumov B.P., Padukov V.A., Plotnikov N.I., Pozin E.P., Semenov S.M., Khokhlovkin D.M., Yazvin L.S., Yakovlev A.M., 1979. Guidebook for Hydrogeologist. Nedra, Leningrad, Volume 1. 512 p. (in Russian) [Албул С.П., Бабушкин В.Д., Боревский Б.В., Веригин Н.Н., Володько И.Ф., Иванов В.Н., Керкис Е.Е., Кирюхин В.А., Климентов П.П., Кононов В.М., Коноплянцев А., Кругликов Н.М., Лехтимяки Э.В., Максимов В.М., Маршалов А.Ф., Матвеев Б.К., Матвеева Э.С., Новожи¬лов В.Н., Огильви А.А., Однопозов В.Л., Онин Н.М., Остроумов Б.П., Падуков В.А., Плотников Н.И., Позин Э.П., Семенов С.М., Хохловкин Д.М., Язвин Л.С., Яковлев А.М. Справочное руководство гидрогеолога. Л.: Недра, 1979. Т. 1. 512 с.].
2. Albul S.P., Babushkin V.D., Borevsky B.V., Verigin N.N., Volod'ko I.F., Ivanov V.N., Kerkis E.E., Kiryukhin V.A., Klimentov P.P., Kononov V.M., Konoplyantsev A.A., Kruglikov N.M., Lekhtimyaki E.V., Maksimov V.M., Marshalov A.F., Matveev K., Matveeva E.S., Novozhylov V.N., Ogilvi A.A., Odnopozov V.L., Onin N.M., Ostroumov B.P., Padukov V.A., Plotnikov N.I., Pozin E.P., Semenov S.M., Khokhlovkin D.M., Yazvin L.S., Yakovlev A.M., 1979. Guidebook for Hydrogeologist. Nedra, Leningrad, Volume 2. 295 p. (in Russian) [Албул С.П., Бабушкин В.Д., Боревский Б.В., Вери- гин Н.Н., Володько И.Ф., Иванов В.Н., Керкис Е.Е., Кирюхин В.А., Климентов П.П., Кононов В.М., Коноплянцев А.А., Кругликов Н.М., Лехтимяки Э.В., Максимов В.М., Маршалов А.Ф., Матвеев Б.К., Матвеева Э.С., Новожи¬лов В.Н., Огильви А.А., Однопозов В.Л., Онин Н.М., Остроумов Б.П., Падуков В.А., Плотников Н.И., Позин Э.П., Семенов С.М., Хохловкин Д.М., Язвин Л.С., Яковлев А.М. Справочное руководство гидрогеолога. Л.: Недра, 1979. Т. 2. 295 с.].
3. Alexandrov V.K., 1990. Thrust and Overthrust Structures of the Pribaikalie. Nauka, Novosibirsk. 102 p. (in Russian) [Алек¬сандров В.К. Надвиговые и шарьяжные структуры Прибайкалья. Новосибирск: Наука, 1990. 102 с.].
4. Bahroudi A., Koyi H.A., Talbot C.J., 2003. Effect of ductile and frictional decollements on style of extension. Journal of Structural Geology 25 (9), 1401-1423. http://dx.doi.org/10.1016/S0191-8141(02)00201-8.
5. Bashkuev Yu.B., Khaptanov V.B., Tsydypov Ch.Ts., Buyanova D.G., 1989. The Natural Electromagnetic Field in the Transbaikalie. Nauka, Moscow. 112 p. (in Russian) [Башкуев Ю.Б., Хаптанов В.Б., Цыдыпов Ч.Ц., Буянова Д.Г. Естественное электромагнитное поле в Забайкалье. М.: Наука, 1989. 112 с.].
6. Bastrakova N.V., 1985. The information content of water-helium surveys in consideration of the issues of groundwater formation. Razvedka i okhrana nedr 12, 42-46 (in Russian) [Бастракова Н.В. Информативность водно-гелиевой съемки при изучении вопросов формирования подземных вод // Разведка и охрана недр. 1985. № 12. С. 42-46].
7. Bastrakova N.V., 1990. The information content of water-helium surveys in hydrogeological studies of the platform areas. In: Methods of regional hydrogeological studies. VSEGINGEO, Moscow, p. 22-28 (in Russian) [Бастракова Н.В. Инфор-мативность водно-гелиевой съемки при гидрогеологическом изучении платформенных областей // Методы региональных гидрогеологических исследований. М.: ВСЕГИНГЕО, 1990. С. 22-28].
8. Bataleva E.A., 2005. The Deep Structure of the Major Fault Zones of the Western Part of the Kyrgyz Tien Shan and Modern Geodynamics (According to Magnetotelluric Sounding Data): Synopsis of PhD Thesis (Candidate degree in geology and mineralogy), Novosibirsk, 20 p. (in Russian) [Баталева Е.А. Глубинная структура крупнейших разломных зон за¬падной части Киргизского Тянь-Шаня и современная геодинамика (по данным магнитотеллурических зондиро¬ваний): Автореф. дис. ... канд. геол.-мин. наук. Новосибирск, 2005. 20 с.].
9. Becken M., Ritter O., Park S.K., Bedrosian P.A., Weckmann U., Weber M., 2008. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophysical Journal International 173 (2), 718-732. http://dx.doi.org/ 10.1111/j.1365-246X.2008.03754.x.
10. Ben-Zion Y., Sammis C.G., 2003. Characterization of fault zones. Pure and Applied Geophysics 160 (3-4), 677-715. http:// dx.doi.org/10.1007/PL00012554.
11. Berdichevskii M.N., Borisova V.P., Golubtsova N.S., Ingerov A.I., Konovalov Yu.F., Kulikov A.V., Solodilov L.N., Cher- nyavskii G.A., Shpak I.P., 1996. Interpretation of magnetotelluric soundings in the Lesser Caucasus. Izvestiya, Physics of the Solid Earth 32 (4), 365-370.
12. Berdichevsky M.N., Vanyan L.L., Koshurnikov A.V., 1999. Magnetotelluric sounding in the Baikal rift zone. Izvestiya, Physics of the Solid Earth 35 (10), 793-814.
13. Bigalke J., Grabner E.W., 1997. The Geobattery model - a contribution to large scale electrochemistry. Electrochimica Acta 42 (23-24), 3443-3452. http://dx.doi.org/10.1016/S0013-4686(97)00053-4.
14. Bokun A.N., 1985. The development and character of fractures in flexure-type bending models. In: Experimental tectonics in theoretical and applied geology. Nauka, Moscow, p. 230-237 (in Russian) [Бокун А.Н. Развитие и характер трещин в моделях флексурообразного изгиба // Экспериментальная тектоника в теоретической и практической геологии. М.: Наука, 1985. С. 230-237].
15. Bukharov A.A., Fialkov V.A., 1996. The Geological Structure of the Bottom of Lake Baikal. Nauka, Novosibirsk, 117 p. (in Russian) [Бухаров А.А., Фиалков В.А. Геологическое строение дна Байкала. Новосибирск: Наука, 1996. 117 с.].
16. Bulgatov A.N., Bulnaev K.B., Ochirov Ts.P., Turunkhaev V.I., 1978. Tectonic Faults of the Transbaikalia. Nauka, Novosibirsk, 112 p. (in Russian) [Булгатов А.Н., Булнаев К.Б., Очиров Ц.О., Турунхаев В.И. Тектонические разломы Забайкалья. Новосибирск: Наука, 1978. 112 с.].
17. Calais E., Vergnolle M., San'kov V., Lukhnev А., Miroshnitchenko А., Amarjargal S., Deverchere J., 2003. GPS measure-ments of crustal deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. Journal of Geophysical Research: Solid Earth 108 (B10). http://dx.doi.org/10.1029/2002JB002373.
18. Chen С.-С., Chi S.-C., Chen C.-S., Yang C.-H., 2007. Electrical structures of the source area of the 1999 Chi-Chi, Taiwan, earthquake: Spatial correlation between crustal conductors and aftershocks. Tectonophysics 443 (3-4), 280-288. http://dx.doi.org/10.1016/j.tecto.2007.01.018.
19. Cheremnykh A.V., 2003. The fault-block structure of the crust in the southern part of East Siberia and the tectonic activity of blocks // Vestnik Tomskogo Gosudarstvennogo Universiteta 3, 187-189 (in Russian) [Черемных А.В. Разломно-блоко- вое строение земной коры юга Восточной Сибири и тектоническая активность блоков // Вестник Томского госу¬дарственного университета. 2003. № 3. С. 187-189].
20. Cheremnykh АУ., 2010. Internal structures of fault zones in the Priolkhonie and evolution of the state of stresses of the upper crust of the Baikal rift. Geodynamics & Tectonophysics 1 (3), 273-284. http://dx.doi.org/10.5800/GT-2010-1-3-0021.
21. Cheremnykh A.V., Markovtseva O.V., 2007. Fracturing and the state of stresses of the Primorsky fault zone (Western Pribai- kalie). Izvestiya Sibirskogo otdeleniya, sektsii nauk o Zemle RAEN. Geologiya, poiski i razvedka rudnykh mestorozhdeniy 30 (4), 70-76 (in Russian) [Черемных А.В., Марковцева О.В. Трещиноватость и напряженное состояние в зоне Приморского сброса (Западное Прибайкалье) // Известия Сибирского отделения, секции наук о Земле РАЕН. Геология, поиски и разведка рудных месторождений. 2007. Т. 30. № 4. С. 70-76].
22. Chernykh V.T., Astakhov N.E., 1981. Natural radioactive elements in rocks and waters of the western part of the Ivolgino- Uda basin. In: Geochemical studies of rocks, minerals and waters in the Transbaikalia. Buryatian Division, Siberian Branch of the USSR Acad. Sci., Ulan-Ude, p. 33-44 (in Russian) [Черных В.Т., Астахов Н.Е. Естественные радиоактивные элементы в породах и водах западной части Иволгино-Удинской впадины // Геохимические исследования горных пород, минералов и вод Забайкалья. Улан-Удэ: БФ СО АН СССР, 1981. С. 33-44].
23. Cloos E., 1968. Experimental analysis of Gulf Coast fracture patterns. American Association of Petroleum Geologists Bulle-tin 52 (3), 420-444.
24. Dahlin T., 2001. The development of electrical imaging techniques. Computers and Geosciences 27 (9), 1019-1029. http:// dx.doi.org/10.1016/S0098-3004(00)00160-6.
25. Delvaux D., Moyes R., Stapel G., Melnikov A., Ermikov V., 1995. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part I: Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics 252 (1-4), 61-101. http://dx.doi. org/10.1016/0040-1951(95)00090-9.
26. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko А., Ruzhich V., San'kov V., 1997. Paleostress reconstruc¬tion and geodynamics of the Baikal region, Central Asia. Part II: Cenozoic rifting. Tectonophysics 282 (1-4), 1-38. http://dx.doi.org/10.1016/S0040-1951(97)00210-2.
27. Dombrovskaya Zh.V., 1973. The Paleogenic Weathering Crust of the Central Pribaikalie. Nauka, Moscow. 153 p. (in Russian) [Домбровская Ж.В. Палеогеновая кора выветривания Центрального Прибайкалья. М.: Наука, 1973. 153 с.].
28. Duchkov A.D., Lysak S.V., Golubev V.A., Dorofeeva R.P., Sokolova L.S., 1999. Heat flow and geothermal field of the Baikal region. Geologiya i geofizika 40 (3), 287-303 (in Russian) [Дучков А.Д., Лысак С.В., Голубев В.А., Дорофеева Р.П., Соколова Л.С. Тепловой поток и геотемпературное поле Байкальского региона // Геология и геофизика. 1999. Т. 40. № 3. С. 287-303].
29. Epov М.Е, Pospeeva Е.V., Vitte L.V., 2012. Crust structure and composition in the southern Siberian craton (influence zone of Baikal rifting), from magnetotelluric data. Russian Geology and Geophysics 53 (3), 293-306. http://dx.doi.org/10.1016 /j.rgg.2012.02.006.
30. Fedorovsky V.S., 1997. Dome tectonics in the Caledonian collision system of Western Cisbaikalia. Geotectonics 31 (6), 483¬497.
31. Florensov N.A., 1960.The Mesozoic and Cenozoic Basins of the Pribaikalie. Publishing House of the USSR Acad. Sci., Moscow-Leningrad, 257 p. (in Russian) [Флоренсов Н.А. Мезозойские и кайнозойские впадины Прибайкалья. М.- Л.: Изд-во АН СССР, 1960. 257 с.].
32. Florensov N.A. (Ed.), 1977. The Role of Rifting in the Geological History of the Earth. Nauka, Novosibirsk, 224 p. (in Rus¬sian) [Роль рифтогенеза в геологической истории Земли / Под ред. Н.А. Флоренсова. Новосибирск: Наука, 1977. 224 с.].
33. Gatinsky Yu.G., Rundquist D.V., 2004. Geodynamics of Eurasia: Plate tectonics and block tectonics. Geotectonics 38 (1), 1-16.
34. Gatinsky Yu.G., Rundquist D.V., Tyupkin Yu.S., 2005. Block structures and kinematics of Eastern and Central Asia from GPS data. Geotectonics 39 (5), 333-348.
35. Gatinsky Yu.G., Rundquist D.V., Tyupkin Yu.S., 2007. Block structures and kinematics of Western Eurasia according to GPS data. Geotectonics 41 (1), 26-37. http://dx.doi.org/10.1134/S0016852107010049.
36. Gibbs A.D., 1990. Linked fault families in basin formation. Journal of Structural Geology 12 (5-6), 795-803. http://dx.doi. org/10.1016/0191-8141(90)90090-L.
37. Glasko M.P., Rantsman E.Ya., 1995. The impact of the modern block structure of the crust of flat areas on safety of technical facilities. Izvestiya RAN. Seriya geograficheskaya 3, 76-80 (in Russian) [Гласко М.П., Ранцман Е.Я. Влияние совре-менной блоковой структуры земной коры равнинных территорий на сохранность технических объектов // Извес¬тия РАН. Серия географическая. 1995. № 3. С. 76-80].
38. Glinsky B.M., Dikhter I.Ya., Zeigarnik V.A., El'tsov I.N., Ivanov V.M., Mandelbaum M.M., Morozova G.M., Shamal' A.I., 1991. The complex of methodological and instrumental methods and results of electromagnetic soundings with a powerful energy source at the Baikal prognostic polygon. Doklady AN SSSR 308 (1), 59-62 (in Russian) [Глинский Б.М., Дихтер И.Я., Зейгарник В.А., Ельцов И.Н., Иванов В.М., Мандельбаум М.М., Морозова Г.М., Шамаль А.И. Ком¬плекс методических, аппаратурных средств и результаты электромагнитных зондирований с мощным энергоис¬точником на Байкальском прогностическом полигоне // Доклады АН СССР. 1991. Т. 308. № 1. С. 59-62].
39. Gol'din S.V., 2002. Destruction of the lithosphere and physical mesomechanics. Fizicheskaya Mezomekhanika 5 (5), 5-22 (in Russian) [Гольдин С.В. Деструкция литосферы и физическая мезомеханика // Физическая мезомеханика. 2002. Т. 5. № 5. С. 5-22].
40. Gol'din S.V., Suvorov V.D., Makarov P.V., Stefanov Yu.P., 2006. An instability gravity model for the structure and stress-
41. strain state of lithosphere in the Baikal rift. Russian Geology and Geophysics 47 (10), 1079-1090.
42. Golubev V.A., 1988. The hydrothermal flow and the thermal field of the Baikal rift zone // Doklady AN SSSR 302 (3), 575-578 (in Russian) [Голубев В.А. Гидротермальный сток и тепловое поле Байкальской рифтовой зоны // Доклады АН СССР. 1988. T. 302. № 3. С. 575-578].
43. Golubev V.A., 2007. Conductive and convective heat loss in the Baikal rift zone. GEO Branch, Publishing House of SB RAS, Novosibirsk, 222 p. (in Russian) [Голубев В.А. Кондуктивный и конвективный вынос тепла в Байкальской рифто¬вой зоне. Новосибирск: Изд-во СО РАН, Филиал «ГЕО», 2007. 222 с.].
44. Gornostaev V.P., 1972. About the deep geoelectrical model of the Pribaikalie. Geologiya i Geofizika 6, 98-102 (in Russian) [Горностаев В.П. О глубинной геоэлектрической модели Прибайкалья // Геология и геофизика. 1972. № 6. С. 98¬102].
45. Gornostaev V.P., 1979. Magnetotelluric surveys of the Lake Baikal basin. Fizika Zemli 6, 99-103 (in Russian) [Горностаев В.П. Магнитотеллурические исследования впадины оз. Байкал // Физика Земли. 1979. № 6. С. 99-103].
46. Gornostaev V.P., Mikhalevsky V.I., Pospeev V.I., 1970. The deep magnetotelluric sounding in the southern part of the Siberian platform and the Baikal rift zone. Geologiya i Geofizika 4, 111-118 (in Russian) [Горностаев В.П., Михалев- ский В.И., Поспеев В.И. Глубинные магнитотеллурические зондирования на юге Сибирской платформы и в зоне Байкальского рифта // Геология и геофизика. 1970. № 4. С. 111-118].
47. Grigoriev A.S., Volovich I.M., Mikhailova A.V., Rebetsky Yu.L., Shakhmuradova Z.E., 1987. The study of the state of stresses, kinematics and development of discontinuities of the sedimentary cover above active faults of the foundation (combina-tion of mathematical simulation and physical modelling under plane-strain conditions). In: Fields of stresses and defor¬mation in the Earth's crust. Nauka, Moscow, p. 5-41 (in Russian) [Григорьев А.С., Волович И.М., Михайлова А.В., Ре- бецкий Ю.Л., Шахмурадова З.Е. Исследование напряженного состояния, кинематики и развития нарушений сплошности осадочного чехла над активными разломами фундамента (при сочетании математическго и физиче¬ского моделирования в условиях плоской деформации) // Поля напряжений и деформаций в земной коре. М.: Наука, 1987. С. 5-41].
48. Gufeld I.L., Matveeva M.I., Novoselov O.N., 2011. Why we cannot predict strong earthquakes in the Earth's crust. Geody- namics & Tectonophysics 2 (4), 378-415. http://dx.doi.org/10.5800/GT-2011-2-4-0051.
49. Gutmanis J.C., Lanyon G.W., Wynn T.J., Watson C.R., 1998. Fluid flow in faults: a study of fault hydrogeology in Triassic sandstone and Ordovician volcaniclastic rocks at Sellafield, north-west England. Proceeding of the Yorkshire Geological Society 52 (2), 159-175. http://dx.doi.org/10.1144/pygs.52.2.159.
50. Gzovsky M.V., 1963. Main Issues of Tectonophysics and Tectonics of the Baydzhansayskoe Anticlinorium. Publishing House of the USSR Academy of Sciences, Moscow, Parts III-IV, 544 p. (in Russian) [Гзовский М.В. Основные вопросы тек- тонофизики и тектоника Байджансайского антиклинория. М.: Изд-во АН СССР, 1963. Ч. III-IV. 544 с.].
51. Hoffmann-Rothe A., Ritter O., Janssen C., 2004. Correlation of electrical conductivity and structural damage at a major strike-slip fault in northern Chile. Journal of Geophysical Research: Solid Earth 109 (B10). http://dx.doi.org/10.1029/ 2004JB003030.
52. Hutchinson D.R., Golmshtok A.Ya., Zonenshain L.P., Moore T.C., Scholz C.A., Klitgord K.D., 1992. Depositional and tec-tonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20 (7), 589-592. http:// dx.doi.org/10.1130/0091-7613(1992)020<0589:DATF0T>2.3.C0;2.
53. Isaev V.P., 2001. About gas paleo-volcanism at Baikal. Geologiya nefti i gaza 5, 45-50 (in Russian) [Исаев В.П. О газовом палеовулканизме на Байкале // Геология нефти и газа. 2001. № 5. С. 45-50].
54. Jacobi R.D., 2002. Basement faults and seismicity in the Appalachian Basin of New York State. Tectonophysics 353 (1-4), 75-113. http://dx.doi.org/10.1016/S0040-1951(02)00278-0.
55. Janssen C., Hoffmann-Rothe A., Tauber S., Wilke H., 2002. Internal structure of the Precordilleran fault system (Chile) - insights from structural and geophysical observations. Journal of Structural Geology 24 (1), 123-143. http://dx.doi.org/ 10.1016/S0191-8141(01)00053-0.
56. Kashik S.A. (Ed.), 1978. Dynamics of the Earth's Crust in Eastern Siberia. Nauka, Novosibirsk, 127 p. (in Russian) [Динами¬ка земной коры Восточной Сибири / Отв. ред. С.А. Кашик. Новосибирск: Наука, 1978. 127 с.].
57. Kaz'min V.G., Gol'mshtok A.Ya., Klitgord K., Moore T., Hutchinson D., Scholz K., Weber I., 1995. The structure and deve-lopment of the Academic ridge area according to seismic and submarine survey data (Baikal rift). Geologiya i Geofizika 36 (10), 164-176 (in Russian) [Казьмин В.Г., Гольмшток А.Я., Клитгорд К., Мур Т., Хатчинсон Д., Шольц К., Ве- бер И. Строение и развитие района Академического хребта по данным сейсмических и подводных исследований (Байкальский рифт) // Геология и геофизика. 1995. Т. 36. № 10. С. 164-176].
58. Khain V.E., 1984. International Tectonic Map of the World (Scale 1:15000000). Mingeo, Moscow.
59. Khaustov A.P., Grabar A.V., 1999. Ground waters of block structures and methods for their identification in crystalline mas¬sifs. Izvestiya vuzov, Geologiya i Razvedka 3, 85-96 (in Russian) [Хаустов А.П., Грабарь А.В. Подземные воды блоковых структур и методы их идентификации в кристаллических массивах // Известия вузов, Геология и разведка. 1999. № 3. С. 85-96].
60. Kissin I.G., 1996. Fluid saturation, electrical conductivity, and seismicity of the crust. Izvestiya, Physics of the Solid Earth 32 (4), 295-303.
61. Kissin I.G., Ruzaikin АЛ., 2000. Earthquake sources in the field of geoelectric inhomogeneities in the crust of the Baikal rift zone. Izvestiya, Physics of the Solid Earth 36 (7), 589-596.
62. Klerkx J., De Batist M., Poort J., Hus R., Van Rensbergen P., Khlystov O., Granin N., 2006. Tectonically controlled methane escape in Lake Baikal. In: Lombardi S., Altunina L.K., Beaubien S.E. (Eds.), Advances in the geological storage of car¬bon dioxide. Springer, Netherlands, Part III, p. 203-219. http://dx.doi.org/10.1007/1-4020-4471-2_17.
63. Klyuchevskii A.V., Zuev F.L., 2011. Fractal assessments of seismic process in the Baikal region lithosphere. Litosfera 1, 143¬149 (in Russian) [Ключевский А.В., Зуев Ф.Л. Фрактальные оценки сейсмического процесса в литосфере Байкальского региона // Литосфера. 2011. № 1. C. 143-149].
64. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2010. Seismic picture of a fault zone. What can be gained from the analysis of fine patterns of spatial distribution of weak earthquake centers? Geodynamics & Tectonophysics 1 (4), 419-440. http://dx.doi.org/10.5800/GT-2010-1-4-0027.
65. Komarov V.A., 1994. Geoelectrochemistry. Textbook. St. Petersburg State University, St. Petersburg, 136 p. (in Russian) [Комаров В.А. Геоэлектрохимия / Учебное пособие. СПб.: СПбГУ, 1994. 136 с.].
66. Kondratiev V.N., Kulyukin A.M., Ponomarev V.S., Romashov A.N., 1985. The study of a two-layer model of the Earth's crust under conditions of biaxial stretching of the lower layer // Izvestiya AN SSSR. Fizika Zemli 3, 17-28 (in Russian) [Конд¬ратьев В.Н., Кулюкин А.М., Пономарев В.С., Ромашов А.Н. Исследование двухслойной модели земной коры при двухосном растяжении нижнего слоя // Известия АН СССР. Физика Земли. 1985. № 3. C. 17-28].
67. Kostyuchenko V.N., Kocharyan G.G., Pavlov D.V., 2002. Deformation characteristics of interblock sections of various scales. Fizicheskaya mezomekhanika 5 (2), 23-42 (in Russian) [Костюченко В.Н., Кочарян Г.Г., Павлов Д.В. Деформацион¬ные характеристики межблоковых промежутков различного масштаба // Физическая мезомеханика. 2002. Т. 5. № 5. С. 23-42].
68. Koval P.V., Udodov Yu.N., San'kov V.A., Yasenovskii A.A., Andrulaitis L.D., 2006. Geochemical activity of faults in the Baikal rift zone (mercury, radon, and thoron). Doklady Earth Sciences 409 (6), 912-915. http://dx.doi.org/10.1134/S1028334 X06060171.
69. Kozhevnikov N.O., 1998. Structural peculiarities of Priolkhonye by the electrical survey data (West Transbaikalia). Geologiya i Geofizika 39 (2), 271-276 (in Russian) [Кожевников Н.О. Некоторые особенности структуры Приольхонья по данным электроразведки (Западное Прибайкалье) // Геология и геофизика. 1998. Т. 39. № 2. С. 271-276].
70. Kozhevnikov N.O., Bigalke J., Kozhevnikov O.K., 2004. Geoelectrical surveys in the Olkhon region; methods, results, and tectonic implications. Russian Geology and Geophysics 45 (2), 235-246.
71. Kozhevnikov N.O., Tezkan B., 1998. The main structure and tectonic features of the Chernorud-Mukhor site on the western shore of Lake Baikal from TEM and SP measurements. Journal of Applied Geophysics 39 (4), 237-250. http://dx.doi.org/ 10.1016/S0926-9851(98)00005-6.
72. Krasny L.I., 1984. The global divisibility of the lithosphere under the geo-blocks concept. Sovetskaya geologiya 7, 17-32 (in Russian) [Красный Л.И. Глобальная делимость литосферы в свете геоблоковой концепции // Советская геология. 1984. № 7. С. 17-32].
73. Krasny L.I., 2003. The Evolution of Tectonic Ideas from the Middle of the 19th Century to the Present. Ocean Geology Re-search Institute, St. Petersburg. 28 p. (in Russian) [Красный Л.И. Эволюция тектонических идей от середины XIX столетия до современности. СПб.: ВНИИ Океангеология, 2003. 28 с.].
74. Krylov S.V., Mandelbaum M.M., Mishen'kin B.P., Mishen'kina Z.R., Petrik G.V., Seleznev V.S., 1981. The Interiors of Baikal (from Seismic Data). Nauka, Novosibirsk, 105 p. (in Russian) [Крылов С.В., Мандельбаум М.М., Мишенькин Б.П., Мишенькина З.Р., Петрик Г.В., Селезнев В.С. Недра Байкала (по сейсмическим данным). Новосибирск: Наука, 1981. 105 с.].
75. Kuklei L.N., 1985. The Precambrian Western Pribaikalie. IPE RAS, Moscow, 189 p. (in Russian) [Куклей Л.Н. Докембрий Западного Прибайкалья. Москва: ИФЗ РАН, 1985. 189 с.].
76. Kurlenya M.V., Seryakov V.M., Eremenko A.A., 2005. Technogenic Geomechanical Stress Fields. Nauka, Novosibirsk, 264 p. (in Russian) [Курленя М.В., Серяков В.М., Еременко А.А. Техногенные геомеханические поля напряжений. Ново¬сибирск: Наука, 2005. 264 с.].
77. Lesne O., Calais E., Deverchere J., 1998. Finite element modeling of crustal deformation in the Baikal rift zone: new insights into the active-passive rifting debate. Tectonophysics 289 (4), 327-340. http://dx.doi.org/10.1016/S0040-1951(98)00004- 3.
78. Lesne O., Calais E., Deverchеre J., Chеry J., Hassani R., 2000. Dynamics of intracontinental extension in the northern Bai-kal rift zone, Siberia, using lithospheric-scale numerical models. Journal of Geophysical Research: Solid Earth 105 (B9), 21727-21744. http://dx.doi.org/10.1029/2000JB900139.
79. Levi K.G., 1980. Relative displacements of plates in the Baikal rift zone. Geologiya i Geofizika 5, 9-15 (in Russian) [Леви К.Г. Относительное перемещение плит в Байкальской рифтовой зоне // Геология и геофизика. 1980. № 5. С. 9-15].
80. Levi K.G., Arzhannikova A.V., Buddo V.Yu., Kirillov P.G., Lukhnev A.V., Miroshnichenko A.I., Ruzhich V.V., San'kov V.A., 1997a. Recent geodynamics of the Baikal rift. Razvedka i okhrana nedr 1, 10-20 (in Russian) [Леви К.Г., Аржанникова А.В., Буддо В.Ю., Кириллов П.Г., Лухнев А.В., Мирошниченко А.И., Ружич В.В., Саньков В.А. Современная геоди¬намика Байкальского рифта // Разведка и охрана недр. 1997. № 1. С. 10-20].
81. Levi K.G., Babushkin S.M., Badardinov A.A., Buddo V.Yu., Larkin G.V., Miroshnichenko A.I., San'kov V.A., Ruzhich V.V., Wong H.K., Delvaux D., Coleman S., 1995. Active tectonics of Lake Baikal. Geologiya i Geofizika 36 (10), 154-163 (in Russian) [Леви К.Г., Бабушкин С.М., Бадардинов А.А., Буддо В.Ю., Ларкин Г.В., Мирошниченко А.И., Саньков В.А., Ружич В.В., Вонг Х.К., Дельво Д., Колман С. Активная тектоника Байкала // Геология и геофизика. 1995. Т. 36. № 10. С. 154-163].
82. Levi K.G., Miroshnitchenko A.I., San'kov V.A., Babushkin S.M., Larkin G.V., Badardinov A.A., Wong H.K., Colman S., Del-vaux D., 1997b. Active faults of the Baikal depression. Bulletin des Centres de Recherches Elf Exploration Production 21 (2), 399-434.
83. Lobatskaya R.M., 1987. Structural Zonation of Faults. Nedra, Moscow, 183 p. (in Russian) [Лобацкая Р.М. Структурная зональность разломов. М.: Недра, 1987. 183 с.].
84. Logachev N.A. (Ed.), 1984. Geology and Seismicity of the BAM Zone. Volume 3, Neotectonics. Nauka, Novosibirsk, 207 p. (in Russian) [Геология и сейсмичность зоны БАМ. Том 3. Неотектоника / Под ред. Н.А. Логачева. Новосибирск: Наука, 1984. 207 с.].
85. Logachev N.A. (Ed.), 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Novosibirsk, 262 p. (in Russian) [Разломооб- разование в литосфере. Зоны сдвига / Под ред. Н.А. Логачева. Новосибирск: Наука, 1991. 262 с.].
86. Logachev N.A. (Ed.), 1992. Faulting in the Lithosphere. Extension Zones. Nauka, Novosibirsk, 222 p. (in Russian) [Разломообразование в литосфере. Зоны растяжения / Под ред. Н.А. Логачева. Новосибирск: Наука, 1992. 222 с.].
87. Logachev N.A. (Ed.), 1994. Faulting in the Lithosphere. Compression Zones. Nauka, Novosibirsk, 264 p. (in Russian) [Раз- ломообразование в литосфере. Зоны сжатия / Под ред. Н.А. Логачева. Новосибирск: Наука, 1994. 264 с.].
88. Logachev N.A., 2003. History and Geodynamics of the Baikal Rift. Russian Geology and Geophysics 44 (5), 373-387.
89. Logachev N.A., Florensov N.A., 1977. The Baikal system of rift basins. In: The role of rifting in the geological history of the Earth. Nauka, Novosibirsk, p. 19-29 (in Russian) [Логачев Н.А., Флоренсов Н.А. Байкальская система рифтовых до¬лин. Роль рифтогенеза в геологической истории Земли. Новосибирск: Наука, 1977. С. 19-29].
90. Logatchev N.A., Lomonosova T.K., Klimanova V.M., 1964. The Cenozoic Sediments of the Irkutsk Amphitheater. Nauka, Moscow, 196 p. (in Russian) [Логачев Н.А., Ломоносова Т.К., Климанова В.М. Кайнозойские отложения Иркутско¬го амфитеатра. М.: Наука, 1964. 196 с.].
91. Logatchev N.A., Zorin Yu.A., 1992. Baikal rift zone: structure and geodynamics. Tectonophysics 208 (1-3), 273-286. http:// dx.doi.org/10.1016/0040-1951(92)90349-B.
92. Lunina O.V., Gladkov A.S., Cheremnykh A.V., 2002. Fracturing in the Primorsky Fault Zone (Baikal Rift System). Russian Geology and Geophysics 43 (5), 446-455.
93. Lunina O.V., Gladkov A.S., Nevedrova N.N., 2009. The Baikal Rift Basins: Its Tectonic Structure and Development History. GEO Branch, Publishing House of SB RAS, Novosibirsk, 316 p. (in Russian) [Лунина О.В., Гладков, А.С., Неведрова Н.Н. Рифтовые впадины Прибайкалья: тектоническое строение и история развития. Новосибирск: Изд-во СО РАН. Филиал «ГЕО», 2009. 316 с.].
94. Lysak S.V., 1988. Heat Flow of Continental Rift Zones. Nauka, Novosibirsk, 200 p. (in Russian) [Лысак С.В. Тепловой поток континентальных рифтовых зон. Новосибирск: Наука, 1988. 200 с.].
95. Maercklin N., Bedrosian P.A., Haberland C., Ritter O., Ryberg T., Weber M., Weckmann U., 2005. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform. Geophysical Research Letters 32 (15), L15303. http://dx.doi.org/10.1029/2005GL022724.
96. Makarov P.V., 2007. Evolutionary nature of structure formation in lithospheric material: universal principle for fractality of solids. Russian Geology and Geophysics 48 (7), 558-574. http://dx.doi.org/10.1016Zj.rgg.2007.06.003.
97. Maslov N.N., Kotov M.F., 1971. Engineering Geology. Construction Publishing House, Moscow, 341 p. (in Russian) [Мас- лов Н.Н., Котов М.Ф. Инженерная геология. М.: Издательство литературы по строительству, 1971. 341 с.].
98. Mats V.D., 1993. The structure and development of the Baikal rift depression. Earth-Science Reviews 34 (2), 81-118. http:// dx.doi.org/10.1016/0012-8252(93)90028-6.
99. Mats V.D., Ufimtsev G.F., Mandelbaum M.M., Alakshin A.M., Pospeev A.V., Shimaraev M.N., Khlystov O.M., 2001. The Cenozoic Baikal Rift Basin: Its Structure and Geological History. Publishing House of SB RAS, Geo Branch, Novosi¬birsk, 252 p. (in Russian) [Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М., Алакшин А.М., Поспеев А.В., Шимараев М.Н., Хлыстов О.М. Кайнозой Байкальской рифтовой впадины: строение и геологическая история. Новосибирск: Изд-во СО РАН. Филиал «ГЕО», 2001. 252 с.].
100. Mazukabzov A.M., Sizykh V.I., 1987. About the nappe-scaly structure of the Western Pribaikalie. Geotektonika 3, 87-90 (in Russian) [Мазукабзов А.М., Сизых В.И. О покровно-чешуйчатом строении Западного Прибайкалья // Геотекто¬ника. 1987. № 3. С. 87-90].
101. Mazukabzov А.М., Sklyarov E.V., Donskaya Т.V., Gladkochub D.P., Fedorovsky V.S., 2011. Metamorphic core complexes of the Transbaikalia: review. Geodynamics & Tectonophysics 2 (2), 95-125. http://dx.doi.org/10.5800/GT-2011-2-2-0036.
102. McCalpin J.P. (Ed.), 1996. Paleoseismology. Academic press, San Diego, 585 p.
103. McClay K.R., Dooley T., Hollings P., Keller J., Thompson L, White M., 1992. Analogue modelling: Fault dynamics project report. 1992. N. 3. Part II. P. 15-36.
104. Melnikov A.I., Mazukabzov A.M., Sklyarov E.V., Vasiliev E.P., 1994. Baikal rift basement: structure and tectonic evolution. Bulletin des Centres Recherches Exploration Production elf Aquitaine 18 (1), 99-122.
105. Mel'nikova V.I., Radziminovich N.A., 1998. Mechanisms of action of earthquake foci in the Baikal region over the period 1991-1996. Geologiya i Geofizika 39 (11), 1598-1607.
106. Mishra D.C., 2011. A unified model of Neoarchean-Proterozoic convergence and rifting of Indian cratons: geophysical con¬straints. International Journal of Geosciences 2 (04), 610-630. http://dx.doi.org/10.4236/ijg.2011.24063.
107. Moore T.C., Jr., Klitgord K.D., Golmshtok A. J., Weber E., 1997. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy. Geological Society of America Bulletin 109 (6), 746-766. http://dx.doi.org/10.1130/0016-7606(1997)109<0746:SASPIT>2.3.C0;2.
108. Mordvinova V.V., Deschamps A., Dugarmaa T., Deverchere J., Ulziibat M., Sankov V.A., Artem'ev A.A., Perrot J., 2007. Velocity Structure of the Lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izvestiya, Physics of the Solid Earth 43 (2), 119-129. http://dx.doi.org/10.1134/S1069351307020036.
109. Moroz Yu.F., Moroz T.A., 2012. Deep geoelectric section of the Baikal rift. Vestnik KRAUNTs, Nauki o Zemle 2 (20), 114-126 (in Russian) [Мороз Ю.Ф., Мороз Т.А. Глубинный геоэлектрический разрез Байкальского рифта // Вестник КРАУНЦ, Науки о Земле. 2012. № 2. С. 114-126].
110. Morozova G.M., Dashevsky Ya.A., Nevedrova N.N., Grekhov I.N., 1999. The depth distribution of electric conductivity and the field of crustal stresses of the Baikal prognostic polygon. Geologiya i Geofizika 40 (3), 332-345 (in Russian) [Моро¬зова Г.М., Дашевский Ю.А., Неведрова Н.Н., Грехов И.Н. Глубинное распределение электропроводности и поле напряжений в земной коре Байкальского прогностического полигона // Геология и геофизика. 1999. Т. 40. № 3. С. 332-345].
111. Morozova G.M., Manstein A.K., El'tsov I.N., Nevedrova N.N., 1998. Deep electromagnetic sounding surveys with a controlled source in the Baikal rift zone. In: Geophysical methods of the Earth's Crust studies. Publishing House of SIC UIGGM, SB RAS, Novosibirsk, p. 57-62 (in Russian) [Морозова Г.М., Манштейн А.К., Ельцов И.Н., Неведрова Н.Н. Глубинные электромагнитные зондирования с контролируемым источником в Байкальской рифтовой зоне // Геофизические методы изучения земной коры. Новосибирск: Изд-во НИЦ ОИГГМ СО РАН, 1998. С. 57-62].
112. Neubauer F., Lips A., Kouzmanov K., Lexa J., Iva^canu P., 2005. 1: Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. Ore Geology Reviews 27 (1-4), 13-44. http://dx.doi.org/10.1016/ j.oregeorev.2005.07.002.
113. Nikolaev P.N., 1992. The Method of Tectono-Dynamic Analysis. Nedra, Moscow, 263 p. (in Russian) [Николаев П.Н. Методика тектоно-динамического анализа. М.: Недра, 1992. 263 с.].
114. Ochirov Ts.O., 1976. Block Tectonics of Transbaikalia. Nauka, Novosibirsk, 199 p. (in Russian) [Очиров Ц.О. Блоковая тектоника Забайкалья. Новосибирск: Наука, 1976. 199 с.].
115. Palacky G.J., 1989. Resistivity characteristics of geologic targets. In: M.N. Nabighian (Ed.), Electromagnetic methods in applied geophysics Theory: Tulsa, Okla. Society of Exploration Geophysicist, Vol. 1, p. 53-130.
116. Parfenov V.D., 1984. To the method of tectonophysical analysis of geological structures. Geotektonika 1, 60-72 (in Russian) [Парфенов В.Д. К методике тектонофизического анализа геологических структур // Геотектоника. 1984. № 1. С. 60-72].
117. Park R.G., 1997. Foundations of structural geology. Chapman & Hall, London, 202 p.
118. Park S.K., Wernicke B., 2003. Electrical conductivity images of Quaternary faults and Tertiary detachment in the California Basin and Range. Tectonics 22 (4), 1030. http://dx.doi.org/10.1029/2001TC001324.
119. Pavlovsky E.V. (Ed.), 1969. Geology of the Pribaikalie. IEC SB AS USSR, Irkutsk, 127 p. (in Russian) [Геология Прибай-калья / Под ред. Е.В. Павловского. Иркутск: ИЗК СО АН СССР, 1969. 127 с.].
120. Perevoznikov D.D., 1999. Geomorphology of the Transition Zone from the Baikal Rift to the Siberian Platform: Synopsis of PhD Thesis (Candidate degree in geography), Irkutsk, 18 p. (in Russian) [Перевозников Д.Д. Геоморфология зоны пе¬рехода от Байкальского рифта к сибирской платформе: Автореф. дис. ... канд. геогр. наук. Иркутск, 1999. 18 с.].
121. Petit C., Deverchere J., 2006. Structure and evolution of the Baikal rift: A synthesis. Geochemistry, Geophysics, Geosystems 7 (11), Q11016. http://dx.doi.org/10.1029/2006GC001265.
122. Petit C., Deverchere J., Houdry-Lemont F., Sankov V., Melnikova V., Delvaux D., 1996. Present-day stress field changes along the Baikal rift and tectonic implications. Tectonics 15 (6), 1171-1191. http://dx.doi.org/10.1029/96TC00624.
123. Pinneker E.V., Pisarsky B.I., Lomonosov I.S., Koldysheva R.Ya., Didenko A.A., Sherman S.I., 1968. Hydrogeology of the Baikal region. Nauka, Moscow, 170 p. (in Russian) [Пиннекер Е.В., Писарский Б.И., Ломоносов И.С., Колдышева Р.Я., Диденко А.А., Шерман С.И. Гидрогеология Прибайкалья. М.: Наука, 1968. 170 с.].
124. Pinneker E.V., Popov A.M., Shpynev E.B., 1998. The depth of surface water penetration into the Earth's crust: Evidence from the Baikal Region. Doklady Earth Sciences 359 (3), 396-399.
125. Pleshanov S.P., Chernov Ya.A., 1968. About the role of faults in the geological structure of the Priolkhonie. Trudy Irkutskogo Politekhnicheskogo Instituta 42, 22-27 (in Russian) [Плешанов С.П., Чернов Ю.А. О роли разрывных нарушений в
126. геологической структуре Приольхонья // Труды Иркутского политехнического института. 1968. Вып. 42. С. 22-27].
127. Pleshanov S.P., Romazina A.A., 1981. Some issues of the kinematics of faulting in the central part of the Baikal rift. In: Problems of faul tectonics. Nauka, Novosibirsk, p. 129-141 (in Russian) [Плешанов С.П., Ромазина А.А. Некоторые вопросы кинематики развития разломов центральной части Байкальского рифта // Проблемы разломной тектони¬ки. Новосибирск: Наука, 1981. С. 129-141].
128. Plyusnin A.M., Astakhov N.E., Peryazeva E.G., 2009. Radon in surface and ground waters of the Transbaikalie: conditions and regularities of dissolution. In: Radioactivity and radioactive elements in human environment. STT, Tomsk, p. 444¬448 (in Russian) [Плюснин А.М., Астахов Н.Е., Перязева Е.Г. Радон в поверхностных и подземных водах Забайка¬лья: условия и закономерности растворения // Радиоактивность и радиоактивные элементы в среде обитания че¬ловека. Томск: STT, 2009. С. 444-448].
129. Polyansky O.P., 2002. Dynamic causes for the opening of the Baikal rift zone: a numerical modeling approach. Tectonophys¬ics 351 (1-2), 91-117. http://dx.doi.org/10.1016/S0040-1951(02)00127-0.
130. Ponomarev V.S., Romashov A.N., Sukhotin A.P., Tsygankov S.S., 1995. Specific features of destruction of two-layer models used to model geological processes. Geologiya i Geofizika 36 (4), 116-121 (in Russian) [Пономарев В.С., Ромашов А.Н., Сухотин А.П., Цыганков С.С. Особенности разрушения двухслойных моделей при моделировании геологи¬ческих процессов // Геология и геофизика. 1995. Т. 36. № 4. С. 116-121].
131. Popov A.M., 1987. About causes of high electrical conductivity of the Earth's crust. Geologiya i Geofizika 12, 56-65 (in Russian) [Попов А.М. О причинах повышенной электропроводности в земной коре // Геология и геофизика. 1987. № 12. С. 56-65].
132. Popov A.M., 1989. Results of deep magnetotelluric sounding in the Baikal region in view of other geophysical methods. Fizika Zemli 8, 31-37 (in Russian) [Попов А.М. Результаты глубинных магнитотеллурических зондирований в Прибайкалье в свете данных других геофизических методов // Физика Земли. 1989. № 8. С. 31-37].
133. Pospeev A.V., 1998. Geoelectrics of the Continental Tectonosphere: Synopsis of PhD Thesis (Doctor of Sciences degree in geology and mineralogy), Irkutsk Technical University, Irkutsk, 34 p. (in Russian) [Поспеев А.В. Геоэлектрика конти¬нентальной тектоносферы: Автореф. дис. ... докт. геол.-мин. наук. Иркутск: Иркутский технический универси¬тет, 1998. 34 с.].
134. Pospeev V.I., Mikhalevsky V.I., 1975. MTS surveys in the southern part of the Siberian platform and the Baikal rift zone. In: Studies of thermal and electromagnetic fields in the USSR. Nauka, Moscow, p. 121-127 (in Russian) [Поспеев В.И., Михалевский В.И. Исследования на юге Сибирской платформы и в Байкальской рифтовой зоне (методом МТЗ) // Исследования теплового и электромагнитного полей в СССР. М.: Наука, 1975. С. 121-127].
135. Pospeev V.I., Van'yan L.L., Gornostaev V.P., 1978. Deep electrical conductivity of the Baikal and Pacific rift zones. In: The All-Union Workshop on electromagnetic sounding. Moscow State University Publishing House, Moscow, p. 45-51 (in Russian) [Поспеев В.И., Ваньян Л.Л., Горностаев В.П. Глубинная электропроводность Байкальской и Тихоокеан¬ской рифтовых зон // Всесоюзная школа-семинар по электромагнитным зондированиям. М.: Изд-во МГУ, 1978. С. 45-51].
136. Radziminovich N.А., 2010. Focal depths of earthquakes in the Baikal region: a review. Izvestiya, Physics of the Solid Earth 46 (3), 216-229. http://dx.doi.org/10.1134/S1069351310030043.
137. Rasskazov S.V., 1993. Magmatism of the Baikal rift system. Nauka, Novosibirsk, 288 p. (in Russian) [Рассказов С.В. Маг¬матизм Байкальской рифтовой системы. Новосибирск: Наука, 1993. 288 с.].
138. Rastsvetaev L.M., 1987. The paragenetic method of structural analysis of disjunctive tectonic faults. In: Problems of structural geology and physics of tectonic processes. GIN, the USSS Acad. Sci., Part 2, p. 173-235 (in Russian) [Рас- цветаев Л.М. Парагенетический метод структурного анализа дизъюнктивных тектонических нарушений // Про¬блемы структурной геологии и физики тектонических процессов. М.: ГИН АН СССР, 1987. Ч. 2. С. 173-235].
139. Rezanov I.N., Tat'kov G.I., Kolomiets V.L., Nefediev M.A., Chebakov G.I., 2004. The regional stress field and seismically active tectonics of the Ust-Selenga basin. In: The evolution of tectonic processes in the Earth's history. GEO Branch, Publishing House of SB RAS, Novosibirsk, Volume 2, p. 106-109 (in Russian) [Резанов И.Н., Татьков Г.И., Коломи- ец В.Л., Нефедьев М.А., Чебаков Г.И. Региональное поле напряжений и сейсмоактивная тектоника Усть-Селен- гинской впадины // Эволюция тектонических процессов в истории Земли. Новосибирск: Изд-во СО РАН. Филиал «ГЕО», 2004. Т. 2. С. 106-109].
140. Rodionov V.N., Sizov I.A., Tsvetkov V.M., 1986. Fundamentals of Rock Mechanics. Nedra, Moscow, 301 p. (in Russian) [Ро¬дионов В.Н., Сизов И.А., Цветков В.М. Основы геомеханики. М.: Недра, 1986. 301 с.].
141. Ruzhich V.V., 1997. Seismotectonic Destruction in the Crust of the Baikal Rift Zone. Publishing House of SB RAS, Novosi¬birsk, 144 p. (in Russian) [Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зо¬ны. Новосибирск: Изд-во СО РАН, 1997. 144 с.].
142. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизиче¬ской среды и сейсмический процесс. М.: Наука, 1987. 100 с.].
143. San'kov V.A., 1989. Fault Penetration Depths. Nauka, Novosibirsk, 136 p. (in Russian) [Саньков В.А. Глубины проникно¬вения разломов. Новосибирск: Наука, 1989. 136 с.].
144. San'kov V.A., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., Byzov L.M., Dembelov M.G., Calais E., Deverchere J., 2009. Extension in the Baikal rift: present-day kinematics of passive rifting. Doklady Earth Sciences 425 (2), 205-209. http://dx.doi.org/10.1134/S1028334X09020056.
145. San'kov V.A., Miroshnitchenko A.I., Levi K.G., Lukhnev A.V., Melnikov A.I., Delvaux D., 1997. Cenozoic stress field evolu-tion in the Baikal rift zone. Bulletin Centre de Recherches Exploration Production Elf Aquitaine 21 (2), 435-455.
146. San'kov V.A., Parfeevets A.V., 2006. The State of Crustral Stresses and Geodynamics of the South-Western Part of the Baikal Rift System. GEO Branch, Publishing House of SB RAS, Novosibirsk, 149 p. (in Russian) [Саньков В.А., Парфеевец А.В. Напряженное состояние земной коры и геодинамика юго-западной части Байкальской рифтовой системы. Новосибирск: Изд-во СО РАН. Филиал «ГЕО», 2006. 149 с.].
147. San'kov V.A., Parfeevets A.V., Arzhannikova A.V., Lukhnev A.A., Miroshnichenko A.I., Ashurkov S.V., Burchevskaya M.A., 2003. The stress-and-strain state of crustal stresses and the kinematics of active faults at the periphery of the Baikal rift (the Western Transbaikalie). In: The geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). IEC SB RAS, Irkutsk, p. 214-218 (in Russian) [Саньков В.А., Парфеевец А.В., Аржанникова А.В., Лухнев А.А., Мирошниченко А.И., Ашурков С.В., Бурчевская М.А. Напряженно-деформированное состояние зем¬ной коры и кинематика активных разломов на периферии Байкальского рифта (Западное Забайкалье) // Геодина¬мическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Иркутск: ИЗК СО РАН, 2003. С. 214-218].
148. San'kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile region. Geotectonics 45 (5), 378-393. http://dx.doi.org/10.1134/S0016852111050049.
149. Schmid M., De Batist M., Granin N.G., Kapitanov V.A., McGinnis D.F., Mizandrontsev I.B., Obzhirov A.I., Wuest A., 2007. Sources and sinks of methane in Lake Baikal: A synthesis of measurements and modeling. Limnology and Oceanography 52 (5), 1824-1837. http://dx.doi.org/10.4319/lo.2007.52.5.1824.
150. Scholz C.A., Klitgord K.D., Hutchinson D.R., ten Brink U.S., Zonenshain L.P., Golmshtok A.Y., Moore T.C., 1993. Results of 1992 seismic reflection experiment in Lake Baikal. Eos, Transactions American Geophysical Union 74 (41), 465-470. http://dx.doi.org/10.1029/93EO00546.
151. Schreurs G., Buiter S.L.H., Boutelier D., 2006. Analogue benchmarks of shortening and extension experiments. In: Analogue and numerical modelling of crustal-scale processes. Geological Society, London, Special Publications 253, 1-27. http:// dx.doi.org/10.1144/GSL.SP.2006.253.01.01.
152. Schulz S.E., Evans J.P., 2000. Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geo-physical structure of active strike-slip faults. Journal of Structural Geology 22 (7), 913-930. http://dx.doi.org/10.1016/ S0191-8141(00)00019-5.
153. Semenov A.S., 1980. Electromagnetic Surveys by the Natural Electric Field Method. Nedra, Leningrad, 446 p. (in Russian) [СеменовА.С. Электроразведка методом естественного электрического поля. Л.: Недра, 1980. 446 с.].
154. Seminskii K.Zh., 2008. Hierarchy in the zone-block lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics 49 (10), 771-779. http://dx.doi.org/10.1016/j.rgg.2007.11.017.
155. Seminskii К.Zh., Radziminovich Ya.B., 2011. Cross-Sectional Sizes and Lateral Zonality of the Baikal Seismic Belt. Doklady Earth Sciences 438 (1), 645-648. http://dx.doi.org/10.1134/S1028334X11050084.
156. Seminsky K.Zh., 1994. Principles and stages of special mapping of the fault-block structure on the basis of fracturing studies. Geologiya i Geofizika 9, 112-130 (in Russian) [Семинский К.Ж. Принципы и этапы спецкартирования разломно- блоковой структуры на основе изучения трещиноватости // Геология и геофизика. 1994. № 9. С. 112-130].
157. Seminsky K.Zh., 2001. Tectonophysical regularities of destruction of the lithosphere as exemplified by the Himalayan com- presion zone // Tikhookeanskaya geologiya 20 (6), 17-30 (in Russian) [Семинский К.Ж. Тектонофизические законо¬мерности деструкции литосферы на примере Гималайской зоны сжатия // Тихоокеанская геология. 2001. Т. 20. № 6. С. 17-30].
158. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO Branch, Publishing House of SB RAS, Novosibirsk, 242 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных раз- ломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН. Филиал «ГЕО», 2003. 242 с.].
159. Seminsky K.Zh., 2009. Major factors of the evolution of basins and faults in the Baikal rift zone: Tectonophysical analysis. Geotectonics 43 (6), 486-500. http://dx.doi.org/10.1134/S001685210906003X.
160. Seminsky K.Zh., 2012. Internal structure of fault zones: spatial and temporal evolution studies on clay models. Geodynamics & Tectonophysics 3 (3), 183-194. http://dx.doi.org/10.5800/GT-2012-3-3-0070.
161. Seminsky K.Zh., Bobrov А.А., 2009. Radon activity of faults (western Baikal and southern Angara areas). Russian Geology and Geophysics 50 (8), 682-692. http://dx.doi.org/10.1016Zj.rgg.2008.12.010.
162. Seminsky K.Zh., Bobrov A.A., 2012. Spatial and temporal variations of soil-radon activity in fault zones of the Pribaikalie (East Siberia, Russia). In: Li Z., Feng C. (Eds.), Handbook of Radon: Properties, Applications and Health. Nova Science Publisher, New York, Ch. 1, р. 1-36.
163. Seminsky K.Zh., Burzunova Yu.P., 2007. Interpretation of chaotic jointing near fault planes: a new approach. Russian Geo-logy and Geophysics 48 (3), 257-266. http://dx.doi.org/10.1016/j.rgg.2007.02.009.
164. Seminsky K.Zh., Cheremnykh А.V., 2011. Jointing patterns and stress tensors in Cenozoic sediments of the Baikal rift: deve¬lopment of the structural-genetic approach. Russian Geology and Geophysics 52 (3), 353-367. http://dx.doi.org/10.1016/ j.rgg.2011.02.008.
165. Seminsky K.Zh., Demberel S., 2013. The first estimations of soil-radon activity near faults in Central Mongolia. Radiation Measurements 49, 19-34. http://dx.doi.org/10.1016/j.radmeas.2012.12.013.
166. Seminsky K.Zh., Karabanov E.B., Kuz'min M.I., 2001. Faulting in Baikal bottom sediments (studies of drilling core BDP-98). Geologiya i geofizika 42 (1-2), 306-316.
167. Seminsky K.Zh., ^zhevnikov N.О., Cheremnykh AV., Pospeeva E.V., Bobrov А.А., Olenchenko V.V., Tugarina М.А., Pota- pov V.V., Burzunova Yu.P., 2012. Interblock zones of the northwestern Baikal rift: results of geological and geophysical studies along the Bayandai Village - Cape Krestovskii profile. Russian Geology and Geophysics 53 (2), 194-208. http:// dx.doi.org/10.1016/j.rgg.2011.12.016.
168. Seminsky K.Zh., Tugarina М.А., 2011. Results of comprehensive studies of the underground hydrosphere within the western shoulder of the Baikal rift (as exemplified by the Bayandai - Krestovsky Cape site). Geodynamics & Tectonophysics 2 (2), 126-144. http://dx.doi.org/10.5800/GT-2011-2-2-0037.
169. Shebalin P., Soloviev A., Le Mouel J.-L., 2002. Scaling organization in the dynamics of blocks-and-faults systems. Physics of the Earth and Planetary Interiors 131 (2), 141-153. http://dx.doi.org/10.1016/S0031-9201(02)00033-X.
170. Sherman S.I., 1977. Physical Laws of Crustal Faults. Nauka, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].
171. Sherman S.I., 2012. Destruction of the lithosphere: Fault-block divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics 3 (4), 315-344. http://dx.doi.org/10.5800/GT-2012-3-4-0077.
172. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modeling Results). Nauka, No-vosibirsk, 112 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 112 с.].
173. Sherman S.I., Dneprovsky Yu.I., 1989. Tectonic stress fields of the Baikal rift zone. Geotektonika 2, 101-112 (in Russian) [Шерман С.И., Днепровский Ю.И. Поля тектонических напряжений Байкальской рифтовой зоны // Геотектоника. 1989. № 2. С. 101-112].
174. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 1999. Destructive zones and fault-block structures of the Central Asia. Tik- hookeanskaya Geologiya 18 (2), 41-53 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Деструктивные зоны и разломно-блоковые структуры Центральной Азии // Тихоокеанская геология. 1999. Т. 18. № 2. С. 41-53].
175. Sherman S.I., Zlogodukhova О.G., 2011. Seismic belts and zones of the Earth: Formalization of notions, positions in the lithosphere and structural control. Geodynamics & Tectonophysics 2 (1), 1-34. http://dx.doi.org/10.5800/GT-2011-2-1- 0031.
176. Sklyarov E.V. (Ed.), 2005. Structural and tectonic correlation across the Central Asia orogenic collage: North-Eastern seg-ment (Guidebook and abstract volume of the Siberian Workshop IGCP-480). IES SB RAS, Irkutsk, 291 p.
177. Sklyarov E.V., Fedorovskii V.S., Sklyarova O.A., Skovitina T.M., Danilova Yu.V., Orlova L.A., Ukhova N.N., 2007. Hydro- thermal activity in the Baikal rift zone: recent hot springs and deposits of paleothermal waters. Doklady Earth Sciences 412 (2), 101-105. http://dx.doi.org/10.1134/S1028334X07010230.
178. Sklyarov E.V., Mazukabzov A.M., Melnikov A.I., 1997. Metamorphic Core Complexes of the Cordilleran Type. SIC UIGGM, Publishing House of SB RAS, Novosibirsk, 182 p. (in Russian) [Скляров Е.В., Мазукабзов A.M., Мельников А.И. Ком-плексы метаморфических ядер кордильерского типа. Новосибирск: НИЦ ОИГГМ СО РАН, 1997. 182 с.].
179. Sklyarova O.A., Sklyarov E.V., Fedorovsky V.S., Sanina N.B., 2004. Mineral lakes in the Priolkhonie: issues of their genesis and evolution. Geografiya i prirodnye resursy 4, 44-49 (in Russian) [Склярова О.А., Скляров Е.В., Федоровский В.С., Санина Н.Б. Минеральные озера Приольхонья: вопросы генезиса и эволюции // География и природные ресурсы. 2004. № 4. С. 44-49].
180. Sobolev G.A., Asatryan Kh.O., 1990. The development of the hierarchy of fracturess during deformation of the higly plastic material. Doklady AN SSSR 315 (2), 345-348 (in Russian) [Соболев Г.А., Асатрян Х.О. Развитие иерархии разрывов при деформировании высокопластичного материала // Доклады АН СССР. 1990. Т. 315. № 2. С. 345-348].
181. Solonenko A.V., Solonenko N.V., Melnikova V.I., Shteiman E.A., 1997. The seismicity and earthquake focal mechanisms of the Baikal seismic zone. Bulletin des Centres Recherches Exploration Production Elf Aquitaine 21 (1), 207-231.
182. Solonenko V.P. (Ed.), 1968. Seismotectonics and Seismicity of the Pribaikalie Rift System. Nauka, Moscow, 220 p. (in Rus¬sian) [Сейсмотектоника и сейсмичность рифтовой системы Прибайкалья / Под ред. В.П. Солоненко. М.: Наука, 1968. 220 с.].
183. Sorokina A.T., Sorokin A.P., Serov M.A., Popov А.А., 2011. Fault-block structures in the eastern margin of the Amur litho- spheric plate, their seismicity, and fluid regimes. Russian Journal of Pacific Geology 5 (1), 13-25. http://dx.doi.org/ 10.1134/S1819714011010064.
184. Stepanov V.M., 1959. Hydrogeological zoning of mountainous regions of East Siberia. Proceedings of the 2nd Conference on groundwater and engineering geology of East Siberia. Irkutsk, Issue 1, p. 71-84 (in Russian) [Степанов В.М. Гидро-геологическая зональность в горных районах Восточной Сибири // Тр. II совещания по подземным водам и ин¬
185. женерной геологии Восточной Сибири. Иркутск, 1959. Вып. 1. С. 71-84].
186. Stepanov V.M., 1989. Introduction to Structural Hydrogeology. Nedra, Moscow, 229 p. (in Russian) [Степанов В.М. Введение в структурную гидрогеологию. М.: Недра, 1989. 229 с.].
187. Sultankhodzhaev A.N., Tyminsky V.G., Spiridonov A.I., 1979. Radioactive Emanations in Studies of Geological Processes. Fan, Tashkent, 119 p. (in Russian) [Султанходжаев А.Н., Тыминский В.Г., Спиридонов А.И. Радиоактивные эманации при изучении геологических процессов. Ташкент: Фан, 1979. 119 с.].
188. Suvorov V.D., Mishenkina Z.M., Petrick G.V., Sheludko I.F., Seleznev V.S., Solovyov V.M., 2002. Structure of the crust in the Baikal rift zone and adjacent areas from deep seismic sounding data. Tectonophysics 351 (1-2), 61-74. http://dx.doi.org/ 10.1016/S0040-1951(02)00125-7.
189. Suvorov V.D., Tubanov Ts.A., 2008. Distribution of local earthquakes in the crust beneath central Lake Baikal. Russian Geo¬logy and Geophysics 49 (8), 611-620. http://dx.doi.org/10.1016/j.rgg.2007.09.019.
190. Tat'kov G.I., 2009. Geophysical Monitoring of the Stress-and-Strain State of Natural and Technical Systems: Synopsis of PhD Thesis (Doctor of Sciences degree in geology and mineralogy), Irkutsk. 43 p. (in Russian) [Татьков Г.И. Геофизи¬ческий мониторинг напряженно-деформированного состояния природных и технических систем: Автореф. дис. ... докт. геол.-мин. наук. Иркутск, 2009. 43 с.].
191. Ten Brink U.S., Taylor M.H., 2002. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research: Solid Earth 107 (B7), 2132. http://dx.doi.org/10.1029/2001JB000300.
192. The Method of Express Measurement of 222Rn activity in Soil Air by RRA Radon Radiometer, 2004. Recommendation. NPP Dose, Moscow, 16 p. (in Russian) [Методика экспрессного измерения объемной активности 222Rn в почвенном воз¬духе с помощью радиометра радона типа РРА. Рекомендация. М: НПП «Доза», 2004. 16 с.].
193. The Neotectonic Map of the Baikal-Amur Railroad Area (Scale 1:3000000). Ed. N.A. Logatchev. IEC, Siberian Branch of the USSR Acad. Sci, Irkutsk, 1982 (in Russian) [Карта неотектоники региона Байкало-Амурской магистрали (м-б 1:3000000) / Отв. ред. Н.А. Логачев. Иркутск: ИЗК СО АН СССР, 1982].
194. Ufimtsev G.F., 1992. Morphotectonics of the Baikal rift zone. Nauka, Novosibirsk, 216 p. (in Russian) [Уфимцев Г.Ф. Морфотектоника Байкальской рифтовой зоны. Новосибирск: Наука, 1992. 216 с.].
195. Unsworth M.J., Bedrosian Р.А., 2004. On the geoelectric structure of major strike-slip faults and shear zones. Earth, Planets and Space 56 (12), 1177-1184.
196. Unsworth M.J., Egbert G., Booker J., 1999. High-resolution electromagnetic imaging of the San Аndreas fault in central California. Journal of Geophysical Research: Solid Earth 104 (B1), 1131-1150. http://dx.doi.org/10.1029/98JB01755.
197. Unsworth M.J., Malin P.E., Egbert G.D., Booker J.R., 1997. Internal structure of the San Andreas Fault at Parkfield. Geology 25 (4), 359-362. http://dx.doi.org/10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2.
198. Viruete J.E., Carbonell R., Marti D., Jurado M.J., Perez-Estaun A., 2002. Architecture of fault zones determined from out-crop, cores, 3-D seismic tomography and geostatistical modeling: example from the Albala Granitic Pluton, SW Iberian Variscan Massif. Tectonophysics 361 (1-2), 97-120. http://dx.doi.org/10.1016/S0040-1951(02)00586-3.
199. Weber M., Abu-Ayyash K., Abueladas A., Agnon A., Alasonati-Tasarova Z., Al-Zubi H., Babeyko A., Bartov Y., Bauer K., Becken M., Bedrosian P.A., Ben-Avraham Z., Bock G., Bohnhoff M., Bribach J., Dulski P., Ebbing J., El-Kelani R., Forster A., Forster H.-J., Frieslander U., Garfunke Z., Goetze H.J., Haak V., Haberland C., Hassouneh M., Helwig S., Hofstetter A., Hoffmann-Rothe A., Jacke K.H., Janssen C., Jaser D., Kesten D., Khatib M., Kind R., Koch O., Koulakov I., Laske G., Maercklin N., Masarweh R., Masri A., Matar A., Mechie J., Meqbe N., Plessen B., Moller P., Mohsen A., Oberhansli R., Oreshin S., Petrunin A., Qabbani I., Rabba I., Ritter O., Romer R.L., Rumpker G., Rybakov M., Ryberg T., Saul J., Scherbaum F., Schmidt S., Schulze A., Sobolev S.V., Stiller M., Stromeyer D., Tarawneh K., Trela C., Weckmann U., Wetze U., Wylegalla K., 2009. Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Reviews of Geophysics 47 (2), RG2002. http://dx.doi.org/10.1029/2008RG000264.
200. Withjack M.O., Islam Q.T., La Pointe P.R., 1995. Normal faults and their hanging-wall deformation: an experimental study. American Association of Petroleum Geologists Bulletin 79 (1), 1-18.
201. Xiao Q., Zhao G., Dong Z., 2011. Electrical resistivity structure at the northern margin of the Tibetan plateau and tectonic implications. Journal of Geophysical Research: Solid Earth 116 (B12), B12401. http://dx.doi.org/10.1029/2010JB 008163.
202. Yakovlev A.V., Koulakov I.Yu., Tychkov S.A., 2007. Moho depths and three-dimensional velocity structure of the crust and upper mantle beneath the Baikal region, from local tomography. Russian Geology and Geophysics 48 (2), 204-220. http://dx.doi.org/10.1016/j.rgg.2007.02.005.
203. Yungsheng S., Krylov S.V., Baojun Ya., Tsai L., Shisyue D., Techen L., Jingzhi L., Singzhyi S., Mishen'kina Z.R., Petrik G.V., Shelud'ko I.F., Seleznev V.S., Solovyev V.M., 1996. Deep seismic sounding of the lithosphere at the Baikal-Northeastern China international transect. Geologiya i Geofizika 37 (2), 3-15 (in Russian) [Юншен C., Крылов С.В., Баоцзюнь Я., Цай Л., Шисюэ Д., Течен Л., Цзинчжи Л., Синчжуй С., Мишенькина З.Р., Петрик Г.В., Шелудько И.Ф., Селезнев В.С., Соловьев В.М. Глубинное сейсмическое зондирование литосферы на международном трансекте Байкал - Северо-Восточный Китай // Геология и геофизика. 1996. Т. 37. № 2. С. 3-15].
204. Zamaraev S.M., 1967. Marginal Structures of the Southern Part of the Siberian Platform. Nauka, Moscow, 248 p. (in Russian) [Замараев С.М. Краевые структуры южной части Сибирской платформы. М.: Наука, 1967. 248 с.].
205. Zamaraev S.M., Pavlov S.F., Vasiliev E.P., Mazukabzov A.M., Ruzhich V.V., Ryazanov G.V., 1979. The Ratio of Ancient and Cenozoic Structures in the Baikal Rift Zone. Nauka, Novosibirsk, 126 p. (in Russian) [Замараев С.М., Павлов С.Ф., Ва¬сильев Е.П., Мазукабзов А.М., Ружич В.В., Рязанов Г.В. Соотношение древней и кайнозойской структур в Бай¬кальской рифтовой зоне. Новосибирск: Наука, 1979. 126 с.].
206. Zherebtsov G.A. (Ed.), 2012. Seismoionospheric and Seismoelectromagnetic Processes in the Baikal Rift Zone. Publishing House of SB RAS, Novosibirsk, 300 p. (in Russian) [Сейсмоионосферные и сейсмоэлектромагнитные процессы в Байкальской рифтовой зоне / Под ред. Г. А. Жеребцова. Новосибирск: Изд-во СО РАН, 2012. 300 с.].
207. Zhirova N.V., Mandelbaum M.M., Morozova G.M., Nevedrova N.N., Epov M.I., 1993. Geoelectric characteristics of seismogenic structures of the Baikal prognostic polygon. Geologiya i Geofizika 34 (1), 133-144 (in Russian) [Жирова Н.В., Мандельбаум М.М., Морозова Г.М., Неведрова Н.Н., Эпов М.И. Геоэлектрическая характеристика сейсмо- генных структур Байкальского прогностического полигона // Геология и геофизика. 1993. Т. 34. № 1. С. 133-144].
208. Zorin Yu.A., Belichenko V.G., Turutanov E.Kh., Mordvinova V.V., Kozhevnikov V.M., Hozbayar P., Tomurtogoo O., Arvisbaatar N., Gao Sh., Davis P., 1994. The Baikal-Mongolian transect. Geologiya i Geofizika 7-8, 94-111 (in Russian) [Зорин Ю.А., Беличенко В.Г., Турутанов Е.Х., Мордвинова В.В., Кожевников В.М., Хозбаяр П., Томуртогоо О., Арвисбаатар Н., Гао Ш., Дэвис П. Байкало-Монгольский трансект // Геология и геофизика. 1994. № 7-8. С. 94¬111].
209. Zorin Yu.A., Mordvinova V.V., Turutanov E.Kh., Belichenko B.G., Artemyev A.A., Kosarev G.L., Gao S.S., 2002. Low seismic velocity layers in the Earth's crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics 359 (3-4), 307-327. http://dx.doi.org/10.1016/S0040-1951(02)005 31-0.
210. Zorin Yu.A., Turutanov E.Kh., 2005. Plumes and geodynamics of the Baikal rift zone. Russian Geology and Geophysics 46 (7), 669-682.
Review
For citations:
Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A. INTERBLOCK ZONES IN THE CRUST OF THE SOUTHERN REGIONS OF EAST SIBERIA: TECTONOPHYSICAL INTERPRETATION OF GEOLOGICAL AND GEOPHYSICAL DATA. Geodynamics & Tectonophysics. 2013;4(3):203-278. (In Russ.) https://doi.org/10.5800/GT-2013-4-3-0099