Preview

Geodynamics & Tectonophysics

Advanced search

SREDNEKEDROVAYA PALEOSEISMODISLOCATION IN THE BAIKAL RIDGE: ITS STRUCTURE AND THROWS ESTIMATED FROM GROUND‐PENETRATING RADAR DATA

https://doi.org/10.5800/GT-2018-9-2-0360

Abstract

Our study aimed to clarify the seismic potential of the Severobaikalsk fault and to discover the structural features of active faults on the NW shores of Lake Baikal. Seismogenic faults and large seismogravitational structures were mapped in the area of the Srednekedrovaya paleoseismodislocation, one of the most remarkable seismotectonic structures in the Baikal region. During the field trip, we tested the capacities of an OKO‐2 georadar and an ABDL‐ Triton antenna used to study cross‐sections of the Baikal ridge. Its slopes are steep, covered with Pinus pumila and abundant screes, many of which developed into boulder streams (‘kurumnik’). The first studies of the Sredneked‐ rovaya paleoseismodislocation were conducted by V.P. Solonenko and his team in 1964–1965. To some extent, this zone can be viewed as a reference object that can provide much information and thus deserves an in‐depth investiga‐ tion using new technologies. Our study combined the field observation and the interpretation of high‐resolution satel‐ lite images provided by DigitalGlobe (US) and downloaded by SAS.Planet. The consolidated database was sufficient for constructing a new schematic map showing the seismogenic faults associated with the Srednekedrovaya paleoseis‐ modislocation. The cumulative length of the ruptures observed on the surface amounted to almost 29.5 km. Some ruptures are separate from each other, and the rupture spacing ranges from the first tens of meters to the first kilome‐ ters. The width of the widest rupture zone is 1.9 km. The length of individual ruptures varies from 5.0 m to 2.7 km. Morphologically, the Srednekedrovaya paleoseismodislocation is represented by ledges and ditches that often comprise complex grabens disturbing the bedrock and slope deposits. The fault structure of this zone is a typical set‐ ting of orthogonal and slightly oblique crustal stretching, but its manifestation differs in the zone segments. In general, it is a combination of steeply dipping and listric faults traced to the depth of 13 m. In plan, the faults are observed to form the systems of subparallel ruptures that mainly strike at 30°. A linear relationship is established between the heights of the seismogenic ledges and the throws estimated from the ground‐penetrating radar data. The former are larger by 0.5–2.0 m than the throw measured from the radargrams. Apparently, this reflects the magnitude of expan‐ sion of the ledge upward along the sloping slope. In the zone of the main fault plane coinciding with the main ledge, the maximum and mean arithmetic throws are 8.3 and 4.93 m, respectively. On other fault planes, the throws range from 0.4 to 4.6 m. The paleoearthquake magnitude ranges from 6.8 to 7.6, according to the estimations from the seis‐ mic rock collapse volume, fault length, and the displacements. Our study of the Srednekedrovaya paleoseismodisloca‐ tion confirms that listric normal faulting is widespread along the western side of the North Baikal basin and gives in‐ direct evidence that conditions for accumulation and release of seismic energy are different on the western and east‐ ern shores of Lake Baikal. It should be noted, however, that in the studied near‐surface layer of the crust, the blocks of loose material may move along the flat planes due to gravitational sliding that increases under the impact of cryogenic processes on the steep slopes of the Baikal ridge.

About the Authors

O. V. Lunina
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Lead Researcher,

128 Lermontov street, Irkutsk 664033



A. S. Gladkov
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher,

128 Lermontov street, Irkutsk 664033



A. A. Gladkov
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Junior Researcher,

128 Lermontov street, Irkutsk 664033



I. A. Denisenko
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

post-graduate student,

128 Lermontov street, Irkutsk 664033



References

1. Chipizubov A.V., Mel'nikov A.I., Stolpovskii A.V., Baskakov V.S., 2003a. Segmentation of paleoseismic dislocations in the North Baikal fault zone. Doklady Earth Sciences 388 (1), 77–80.

2. Chipizubov A.V., Mel'nikov A.I., Stolpovskii A.V., Baskakov V.S., 2003b. Paleoseismic dislocations and paleoearthquakes within the Baikal-Lena Reserve (zone of the Severobaikalsky fault) // Proceedings of Baikal-Lena State Nature Reserve. Issue 3. Irkutsk, p. 6–18 (in Russian) [Чипизубов А.В., Мельников А.И., Столповский А.В., Баскаков В.С. Палеосейсмодислокации и палеоземлетрясения в пределах Байкало-Ленского заповедника (зона Северобайкальского разлома) // Труды Государственного природного заповедника «Байкало-Ленский». Вып. 3. Иркутск: РИО НЦ РВХ ВСНЦ СО РАМН, 2003. С. 6–18].

3. Clifton A.E., Schlische R.W., Withjack M.O., Ackermann R.V., 2000. Influence of rift obliquity on fault-population systematics: results of experimental clay models. Journal of Structural Geology 22 (10), 1491–1509. https://doi.org/10.1016/S0191-8141(00)00043-2.

4. Corti G., Bonini M., Innocenti F., Manetti P., Mulugeta G., 2001. Centrifuge models simulating magma emplacement during oblique rifting. Journal of Geodynamics 31 (5), 557–576. https://doi.org/10.1016/S0264-3707(01)00032-1.

5. Daniels D.J., 2004. Ground Penetrating Radar. Second edition. The Institution of Electrical Engineers, London, UK, 734 p.

6. Davis J.L., Annan A.P., 1989. Ground penetrating radar for high-resolution mapping of soil and stratigraphy. Geophysical Prospecting 37 (5), 531–551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x.

7. Donskaya T.V., Bibikova E.V., Gladkochub D.P., Mazukabzov A.M., Bayanov T.B., De Waele B., Didenko A.N., Bukharov A.A., Kirnozova T.I., 2008. Petrogenesis and age of the felsic volcanic rocks from the North Baikal volcanoplutonic belt, Siberian craton. Petrology 16 (5), 422–447. https://doi.org/10.1134/S0869591108050020.

8. Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of Early Proterozoic postcollisional granitoids in the Southern Siberian craton. Petrology 13 (3), 253–279.

9. Doser D.I., 1991. Faulting within the western Baikal rift as characterized by earthquake studies. Tectonophysics 196 (1–2), 87–107. https://doi.org/10.1016/0040-1951(91)90291-Y.

10. Imaev V.S., Imaeva L.P., Smekalin О.P., Koz'min B.M., Grib N.N., Chipizubov А.V. 2015. A seismotectonic map of Eastern Siberia. Geodynamics & Tectonophysics 6 (3), 275–287 (in Russian) [Имаев В.С., Имаева Л.П., Смекалин О.П., Козьмин Б.М., Гриб Н.Н., Чипизубов А.В. Карта сейсмотектоники Восточной Сибири // Геодинамика и тектонофизика. 2015. Т. 6. № 3. С. 275–287]. https://doi.org/10.5800/GT-2015-6-3-0182.

11. Imaeva L.P., Imaev V.S., Smekalin O.P., Grib N.N., 2015. A seismotectonic zonation map of Eastern Siberia: new principles and methods of mapping. Open Journal of Earthquake Research 4 (4), 115–125. https://doi.org/10.4236/ojer.2015.44011.

12. Le Gall B., Tiercelin J.-J., Richert J.-P., Gente P., Sturchio N.C., Stead D., Le Turdu C., 2000. A morphotectonic study of an extensional fault zone in a magma-rich rift: the Baringo Trachyte Fault System, central Kenya Rift. Tectonophysics 320 (2), 87–106. https://doi.org/10.1016/S0040-1951(00)00069-X.

13. Levi K.G., Babushkin S.M., Badardinov A.A., Buddo V.Yu., Larkin G.V., Miroshnichenko A.I., San'kov V.A., Ruzhich V.V., Wong H.K., Delvaux D., Coleman S., 1995. Active Baikal tectonics. Geologiya i Geofizika (Russian Geology and Geophysics) 36 (10), 154–163 (in Russian) [Леви К.Г., Бабушкин С.М., Бадардинов А.А., Буддо В.Ю., Ларкин Г.В., Мирошниченко А.И., Саньков В.А., Ружич В.В., Вонг Х.К., Дельво Д., Колман С. Активная тектоника Байкала // Геология и геофизика. 1995. Т. 36. № 10. С. 154–163].

14. Levi K.G., Miroshnichenko A.I., San’kov V.A., Babushkin S.M., Larkin G.V., Badardinov A.A., Wong H.K., Coleman S., Delvaux D., 1997. Active faults of the Baikal Basin. Bulletin Centre de Recherches Exploration Production Elf-Aquitaine 21 (2), 399–434.

15. Logachev N.A. (Ed.), 1984. Geology and Seismicity of the BAM Zone. Neotectonics. Nauka, Siberian Branch, Novosibirsk, 207 p. (in Russian) [Геология и сейсмичность зоны БАМ. Неотектоника / Ред. Н.А. Логачев. Новосибирск: Наука. СO, 1984. 207 с.].

16. Logachev N.A., 2003. History and geodynamics of the Baikal rift. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (5), 391–406.

17. Lunina O.V., 2001. Lithospheric stress field as a control over seismogenic fault parameters and earthquake magnitudes. Geologiya i Geofizika (Russian Geology and Geophysics) 42 (9), 1389–1398.

18. Lunina O.V., 2002. Influence of the Lithosphere State of Stresses on the Relationships of the Parameters and Inner Structure of Seismically Active Faults. Ph.D. Thesis, Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 223 p. (in Russian) [Лунина О.В. Влияние напряженного состояния литосферы на соотношение параметров и внутреннюю структуру сейсмоактивных разломов: Дис. … канд. геол.-мин. наук. Иркутск: ИЗК СО РАН, 2002. 223 с.].

19. Lunina O.V., 2016. The digital map of the Pliocene-Quaternary crustal faults in the southern East Siberia and the adjacent Northern Mongolia. Geodynamics & Tectonophysics 7 (3), 407–434 (in Russian) [Лунина О.В. Цифровая карта разломов для плиоцен-четвертичного этапа развития земной коры юга Восточной Сибири и сопредельной территории Северной Монголии // Геодинамика и тектонофизика. 2016. Т. 7. № 3. С. 407–434]. https://doi.org/10.5800/GT-2016-7-3-0215.

20. Lunina O.V., Andreev A.V., Gladkov A.A., 2014. Geologic hazards associated with seismogenic faulting in southern Siberia and Mongolia: forms and location patterns. Russian Geology and Geophysics 55 (8), 1028–1042. https:// doi.org/10.1016/j.rgg.2014.07.010.

21. McCalpin J.P. (Ed.), 2009. Paleoseismology. Second Edition. Elsevier, Amsterdam, 613 p. Rogozhin E.A., 2012. Essays in Regional Seismotectonics. IPE RAS, Moscow, 340 p. (in Russian) [Рогожин Е.А. Очерки региональной сейсмотектоники. М.: ИФЗ РАН, 2012. 340 с.].

22. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1992. Faulting in the Lithosphere. Tensile Stress Zones. Nauka, Siberian Branch, Novosibirsk, 227 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука. Сибирское отделение, 1992. 227 с.].

23. Smekalin O.P., Chipizubov A.V., Imayev V.S., 2010. Paleoearthquakes in Pribaikalie: methods and results of dating. Geodynamics & Tectonophysics 1 (1), 55–74 (in Russian) [Смекалин О.П., Чипизубов А.В., Имаев В.С. Палеоземлетрясения Прибайкалья: методы и результаты датирования // Геодинамика и тектонофизика. 2010. Т. 1. № 1. С. 55–74]. https://doi.org/10.5800/GT-2010-1-1-0006.

24. Solonenko V.P. (Ed.), 1968. Seismotectonics and Seismicity of the Rift System of Pribaikalie. Nauka, Moscow, 220 p. (in Russian) [Сейсмотектоника и сейсмичность рифтовой системы Прибайкалья / Ред. В.П. Солоненко. М.: Наука, 1968. 220 с.].

25. Solonenko V.P. (Ed.), 1977. Seismic Zoning of Eastern Siberia and Its Geological and Geophysical Base. Nauka, Novosibirsk, 301 p. (in Russian) [Сейсмическое районирование Восточной Сибири и его геолого-геофизические основы / Ред. В.П. Солоненко. Новосибирск: Наука, 1977. 301 с.].

26. Twiss R.J., Moores E.M., 1992. Structural Geology. W.N. Freeman and Company, New York, 532 p.]. Ufimtsev G.F., 2001. Investigation around Baikal. Nauka v Rossii (Science in Russia) (3), 62–71. (in Russian) [Уфимцев Г.Ф. Исследования вокруг Байкала. Наука в России. 2001. № 3. С. 62–71].

27. Ufimtsev G.F., 2013. Small hollows in the Baikal rift zone. Geography and Natural Resources 34 (4), 323–330. https://doi.org/10.1134/S1875372813040045.

28. Vladov V.L., Starovoytov A.V., 2004. Introduction to Ground-penetrating Radar. MSU Publishing House, Moscow, 153 p. (in Russian) [Владов М.Л., Старовойтов А.В. Введение в георадиолокацию. М.: Изд-во МГУ, 2004. 153 c.].

29. Wells D.L., Coppersmith K.J., 1994. New emprical relationship among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.


Review

For citations:


Lunina O.V., Gladkov A.S., Gladkov A.A., Denisenko I.A. SREDNEKEDROVAYA PALEOSEISMODISLOCATION IN THE BAIKAL RIDGE: ITS STRUCTURE AND THROWS ESTIMATED FROM GROUND‐PENETRATING RADAR DATA. Geodynamics & Tectonophysics. 2018;9(2):531-555. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0360

Views: 1032


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)