Preview

Geodynamics & Tectonophysics

Advanced search

INTEGRATED APPROACH TO ASSESSING THE SEISMIC HAZARD OF URBAN AREAS IN SOUTHERN PRIANGARIE (CASE OF THE LEFT BANK OF THE ANGARA RIVER IN IRKUTSK)

https://doi.org/10.5800/GT-2018-9-2-0359

Abstract

Seismic hazard assessment with the use of an integrated approach is discussed on the case of the left bank of the Angara river in Irkutsk, Russia. Potential earthquake focal zones have been identified in the study area. A brief overview of fault tectonics, seismology and seismogeology of the study area is presented. The map of the epicenters of local earthquakes and the map of active faults in the study area show the magnitudes of potential seismic events in the potential earthquake focal zones. The methodology of instrumental measurements and the methods of seismic hazard assessment are considered in detail. Calculations are based on the data obtained by the instrumental methods of seismic microzoning. Theoretical seismic effects on typical ground conditions are calculated, and the estimations are obtained with reference to maximum accelerations for predicted strong earthquakes. Estimated are potential seismic effects of probable strong earthquakes on the foundations of structures in the study area. Based on the estimations, an initial signal is formed (taking into account the potential earthquake focal zones, their parameters and the spectral composition of vibrations corresponding to the local earthquakes), and a required set of seismic models is developed in order to quantify the parameters of soil motions that may take place in the event of a strong earthquake. The experimental methods provided the data on the seismic properties of the reference and investigated soils, the propagation rates of seismic waves in such soils, and the pattern of microseism levels, as required for a valid estimation of seismic effect parameters by the seismic rigidity method and the microseism technique. Currently, both methods are by far the most effective in determining the seismic hazard of the territories. Statistical analysis was carried out using the calculations and the simulation data to more clearly determine the scatter of the results obtained. The seismic hazard of the study area is assessed based on the results of this study.

About the Authors

A. Yu. Eskin
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Researcher,

128 Lermontov street, Irkutsk 664033



V. I. Dzhurik
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Head of Laboratory,

128 Lermontov street, Irkutsk 664033



S. P. Serebrennikov
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher,

128 Lermontov street, Irkutsk 664033



E. V. Bryzhak
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher,

128 Lermontov street, Irkutsk 664033



References

1. Building Code II-7-81* (Updated Revision), 2011. Construction in Seismic Regions. Ministry of Regional Development, Moscow, 71 p. (in Russian) [СНиП II-7-81*(Актуализированная редакция). Строительство в сейсмических районах. М.: Министерство регионального развития, 2011. 71 с.]. Calculation methods in construction, 1998. In: Seismic microzoning guidelines. Nauka, Moscow, p. 130–196 (in Russian) [Расчетные методы в СМР // Методическое руководство по сейсмическому микрорайонированию. М.: Наука, 1998. С. 130–196].

2. Drennov A.F., Dzhurik V.I., Serebrennikov S.P., Drennova N.N., 2011. Influence of the upper section on the amplitudefrequency content of a seismic signal by the example of seismic stations in the Baikal and the Transbaikal region. Seismic Instruments 47 (1), 57–65. https://doi.org/10.3103/S0747923911010099.

3. Dzhurik V.I., Serebrennikov S.P., Bryzhak E.V., Eskin A.Yu., 2016. To the technique of forming initial signals for predicting maximum seismic effects (case of Irkutsk). Advances in Current Natural Sciences (3), 146–152 (in Russian) [Джурик В.И., Серебренников С.П., Брыжак Е.В., Ескин А.Ю. К методике формирования исходных сигналов с целью прогноза максимальных сейсмических воздействий (на примере г. Иркутска) // Успехи современного естествознания. 2016. № 3. С. 146–152].

4. Electrical Exploration. Geophysicist Guidebook, 1982. Nedra, Moscow, 480 p. (in Russian) [Электроразведка. Справочник геофизика. М.: Недра, 1982. 480 с.]. Golenetsky S.I., 1997. Earthquakes in Irkutsk. Imya Publishing House, Irkutsk, 97 p. (in Russian) [Голенецкий С.И. Землетрясения в Иркутске. Иркутск: Изд-во «Имя», 1997. 97с.].

5. Gorbatikov A.V., Stepanova M.Y., Korablev G.E., 2008. Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium. Izvestiya, Physics of the Solid Earth 44 (7), 577–592. https://doi.org/10.1134/S1069351308070082.

6. Gurvich I.I., Nomokonov V.P. (Eds.), 1981. Seismic Exploration. Geophysicist Guidebook. Nedra, Moscow, 462 p. (in Russian) [Сейсморазведка. Справочник геофизика / Ред. И.И. Гурвич, В.П. Номоконов. М.: Недра, 1981. 462 с.].

7. IPI2Win User Guide, 2001. MSU, Moscow, 37 p. (in Russian) [IPI2Win. Руководство пользователя. М.: МГУ, 2001. 37 с.].

8. Levi K.G., Masalsky O.K. (Eds.), 2005. Map of Earthquake Epicenters in East Siberia (1950–2005). Publishing House of IEC SB RAS, Irkutsk (in Russian) [Карта эпицентров землетрясений Восточной Сибири, произошедших за период 1950–2005 гг. / Ред. К.Г. Леви, О.К. Масальский. Иркутск: ИЗК СО РАН, 2005].

9. Logachev N.A. (Ed.), 1996. Lithosphere of Central Asia. Nauka, Novosibirsk, 238 p. (in Russian) [Литосфера Центральной Азии / Ред. Н.А. Логачев. Новосибирск: Наука, 1996. 238 с.].

10. Medvedev S.V., 1962. Engineering Seismology. Gosstroiizdat, Moscow, 260 p. (in Russian) [Медведев С.В. Инженерная сейсмология. M.: Госстройиздат, 1962. 260 с.]. Pavlov O.V. (Ed.), 1984. Seismic Microzonation. Nauka, Moscow, 235 p. (in Russian) [Сейсмическое микрорайонирование / Ред. О.В. Павлов. М.: Наука, 1984. 235 с.].

11. Pavlov O.V. (Ed.), 1988. Assessment of Soil Conditions Impact on Seismic Hazard. Guidelines for Seismic Microzonation. Nauka, Moscow, 224 p. (in Russian) [Оценка влияния грунтовых условий на сейсмическую опасность. Методическое руководство по сейсмическому микрорайонированию / Ред. О.В. Павлов. М.: Наука, 1988. 224 с.].

12. RSN 65-87. Engineering Surveys for Construction. Seismic Microzoning. Technical Requirements to Works, 1987. MosCTISIZ, RSFSR Gosstroi, Moscow, 26 p. (in Russian) [РСН 65-87. Инженерные изыскания для строительства. Сейсмическое микрорайонирование. Технические требования к проведению работ. М.: МосЦТИСИЗ Госстроя РСФСР, 1987. 26 с.].

13. RSN 66-87. Engineering Surveys for Construction. Seismic Microzoning. Technical Requirements to Geophysical Works. Seismic Exploration, 1987. MosCTISIZ, RSFSR Gosstroi, Moscow, 38 p. (in Russian) [РСН 66-87. Инженерные изыскания для строительства. Технические требования к производству геофизических работ. Сейсморазведка. Госстрой РСФСР. М.: МосЦТИСИЗ Госстроя РСФСР, 1987. 38 с.].

14. Seismic Microzoning Guidelines, 1988. Nauka, Moscow, 300 p. (in Russian) [Методическое руководство по сейсмическому микрорайонированию. М.: Наука, 1988. 300 с.].

15. The Map of General Seismic Zonation of the Russian Federation, 1999. Scale 1:8000000. The RF Ministry of Science and Technology, Schmidt UIPE, Moscow, 57 p. (in Russian) [Карта общего сейсмического районирования территории Российской Федерации. Масштаб 1:8000000. М.: Министерство науки и технологий РФ, ОИФЗ им. О.Ю. Шмидта, 1999. 57 с.].


Review

For citations:


Eskin A.Yu., Dzhurik V.I., Serebrennikov S.P., Bryzhak E.V. INTEGRATED APPROACH TO ASSESSING THE SEISMIC HAZARD OF URBAN AREAS IN SOUTHERN PRIANGARIE (CASE OF THE LEFT BANK OF THE ANGARA RIVER IN IRKUTSK). Geodynamics & Tectonophysics. 2018;9(2):515-530. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0359

Views: 909


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)