Preview

Геодинамика и тектонофизика

Расширенный поиск

АНИЗОТРОПНЫЕ СВОЙСТВА ВЕРХНЕЙ МАНТИИ ЦЕНТРАЛЬНОЙ АЗИИ ПО ДАННЫМ ДИСПЕРСИИ ГРУППОВЫХ СКОРОСТЕЙ ВОЛН РЭЛЕЯ И ЛЯВА

https://doi.org/10.5800/GT-2018-9-2-0354

Аннотация

В работе представлены результаты исследования анизотропных свойств верхней мантии Цен‐ тральной Азии, выполненного на основании представительной выборки дисперсионных кривых групповых скоростей основной моды волн Рэлея и Лява. Дисперсионные кривые рассчитывались в диапазоне периодов 10–250 с. Карты распределений групповых скоростей с оценками горизонтального разрешения вычислялись методом поверхностно‐волновой томографии для сферической поверхности. По результатам картирования в заданных с учетом разрешения точках области исследования восстанавливались локальные дисперсионные кривые групповых скоростей и проводилась их инверсия в одномерные скоростные разрезы волн SV и SH и оценивался коэффициент вертикальной анизотропии. Таким образом, была получена трехмерная анизо‐ тропная модель распределения скоростей волн S в коре и мантии до глубины 500 км. Показано, что верти‐ кальная анизотропия в верхней мантии наблюдается до глубины около 250 км, с максимумом в интервале глубин от подошвы коры до 150 км. Распределение анизотропных свойств является неоднородным и отра‐ жает геологическое строение исследуемой области. Так, тектонически активные регионы характеризуются высокими значениями коэффициента анизотропии и пониженными значениями скоростей S‐волн. Получен‐ ные результаты в дальнейшем могут способствовать построению более детальных и обоснованных геодина‐ мических моделей рассматриваемой территории.

Об авторах

А. И. Середкина
Институт земной коры СО РАН
Россия

канд. физ.-мат. наук, с.н.с.,

664033, Иркутск, ул. Лермонтова, 128



О. А. Соловей
Институт земной коры СО РАН
Россия

канд. геол.-мин. наук, н.с.,

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Amante C., Eakins B.W., 2009. ETOPO1. 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M.

2. Bijwaard H., Spakman W., Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth 103 (B12), 30055–30078. https://doi.org/10.1029/98JB02467.

3. Chen Y., Badal J., Zhang Z., 2009. Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions. Journal of Asian Earth Sciences 36 (4–5), 289–302. https://doi.org/10.1016/j.jseaes.2009.06.011.

4. Dziewonski A.M., Anderson D.L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors 25 (4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7.

5. Forsyth D.W., 1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of the Royal Astronomical Society 43 (1), 103–162. https://doi.org/10.1111/j.1365-246X.1975.tb00630.x.

6. Fouch M.J., Rondenay S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors 158 (2–4), 292–320. https://doi.org/10.1016/j.pepi.2006.03.024.

7. Koulakov I., Bushenkova N., 2010. Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times. Tectonophysics 486 (1–4), 81–100. https://doi.org/10.1016/j.tecto.2010.02.011.

8. Kozhevnikov V.M., Seredkina A.I., Solovei O.A., 2014. 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion. Russian Geology and Geophysics 55 (10), 1239–1247. https://doi.org/10.1016/j.rgg.2014.09.010.

9. Levshin A.L., Yanovskaya T.B., Lander A.V., Bukchin B.G., Barmin M.P., Ratnikova L.I., Its E.N., 1986. Surface Seismic Waves in a Laterally Inhomogeneous Earth. Nauka, Moscow, 278 p. (in Russian) [Левшин А.Л., Яновская Т.Б., Ландер А.В., Букчин Б.Г., Бармин М.П., Ратникова Л.И., Итс Е.Н. Сейсмические поверхностные волны в горизонтально-неоднородной Земле. М.: Наука, 1986. 278 с.].

10. Li Y., Wu Q., Pan J., Zhang F., Yu D., 2013. An upper mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth and Planetary Science Letters 377–378, 367–377. https://doi.org/10.1016/j.epsl.2013.06.033.

11. Meissner R., Mooney W.D., Artemieva I., 2002. Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International 149 (1), 1–14. https://doi.org/10.1046/j.1365-246X.2002.01628.x.

12. Pandey S., Yuan X., Debayle E., Priestley K., Kind R., Tilmann F., Li X., 2014. A 3D shear-wave velocity model of the upper mantle beneath China and the surrounding areas. Tectonophysics 633, 193–210. https://doi.org/10.1016/j.tecto.2014.07.011.

13. Ritzwoller M.H., Levshin A.L., 1998. Eurasian surface wave tomography: group velocities. Journal of Geophysical Research: Solid Earth 103 (B3), 4839–4878. https://doi.org/10.1029/97JB02622.

14. Seredkina A.I., Kozhevnikov V.M., Melnikova V.I., Solovey O.A., 2016. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions. Physics of the Earth and Planetary Interiors 261 (Part B), 152–160. https://doi.org/10.1016/j.pepi.2016.10.011.

15. Shapiro N.M., Ritzwoller M.H., 2002. Monte-Carlo inversion for a global shear velocity model for the crust and upper mantle. Geophysical Journal International 151 (1), 88–105. https://doi.org/10.1046/j.1365-246X.2002.01742.x.

16. Trampert J., Woodhouse J., 2003. Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s. Geophysical Journal International 154 (1), 154–165. https://doi.org/10.1046/j.1365-246X.2003.01952.x.

17. Villaseñor A., Ritzwoller M.H., Levshin A.L., Barmin M.P., Engdahl E.R., Spakman W., Trampet J., 2001. Shear velocity structure of Central Eurasia from inversion of surface wave velocities. Physics of the Earth and Planetary Interiors 123 (2–4), 169–184. https://doi.org/10.1016/S0031-9201(00)00208-9.

18. Yanovskaya T.B., 2001. A surface wave tomography method based on the Backus-Gilbert approach. In: Problems of lithosphere dynamics and seismicity. Computational Seismology, vol. 32. GEOS, Moscow, p. 11–26 (in Russian) [Яновская Т.Б. Развитие способов решения задач поверхностно-волновой томографии на основе метода Бэйкуса-Гильберта // Вычислительная сейсмология. Вып. 32. Проблемы динамики литосферы и сейсмичности. М.: ГЕОС, 2001. С. 11–26].

19. Yanovskaya T.B., 2015. Surface-Wave Tomography in Seismological Studies. Nauka, St. Petersburg, 167 p. (in Russian) [Яновская Т.Б. Поверхностно-волновая томография в сейсмологических исследованиях. СПб.: Наука, 2015. 167 с.].

20. Yanovskaya T.B., Akchurin K.R., 2009. Anisotropy of the upper mantle of the Asian continent from the phase and group velocities of the Rayleigh and Love waves. In: V.N. Troyan, N.I. Uspensky, A.K. Sarayev (Eds.), Issues of geophysics, vol. 42. Publishing House of the St. Petersburg University, St. Petersburg, p. 3–11 (in Russian) [Яновская Т.Б., Акчурин К.Р. Анизотропия верхней мантии Азиатского континента по данным фазовых и групповых скоростей волн Рэлея и Лява // Вопросы геофизики. Вып. 42 / Ред. В.Н. Троян, Н.И. Успенский, А.К. Сараев. СПб.: Изд-во Санкт-Петербургского университета, 2009. С. 3–11].

21. Yanovskaya T.B., Antonova L.M., Kozhevnikov V.M., 2000. Lateral variations of the upper mantle structure in Eurasia from group velocities of surface waves. Physics of the Earth and Planetary Interiors 122 (1–2), 19–32. https://doi.org/10.1016/S0031-9201(00)00184-9.

22. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7.

23. Yanovskaya T.B., Kozhevnikov V.M., 2006. Anisotropy of the upper mantle of the Asian continent according to the group velocities of Rayleigh and Love waves. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (5), 622–629.

24. Zhao D., Lei J., Inoue T., Yamada A., Gao S.S., 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 243 (3–4), 681–691. https://doi.org/10.1016/j.epsl.2006.01.033.

25. Zhou Y., Nolet G., Dahlen F.A., Laske G., 2006. Global upper-mantle structure from finite-frequency surface-wave tomography. Journal of Geophysical Research: Solid Earth 111 (B4), B04304. https://doi.org/10.1029/2005JB003677.


Рецензия

Для цитирования:


Середкина А.И., Соловей О.А. АНИЗОТРОПНЫЕ СВОЙСТВА ВЕРХНЕЙ МАНТИИ ЦЕНТРАЛЬНОЙ АЗИИ ПО ДАННЫМ ДИСПЕРСИИ ГРУППОВЫХ СКОРОСТЕЙ ВОЛН РЭЛЕЯ И ЛЯВА. Геодинамика и тектонофизика. 2018;9(2):427-437. https://doi.org/10.5800/GT-2018-9-2-0354

For citation:


Seredkina A.I., Solovey O.A. ANISOTROPIC PROPERTIES OF THE UPPER MANTLE IN CENTRAL ASIA ACCORDING TO THE GROUP VELOCITY DISPERSION CURVES FOR RAYLEIGH AND LOVE WAVES. Geodynamics & Tectonophysics. 2018;9(2):427-437. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0354

Просмотров: 958


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)