Preview

Geodynamics & Tectonophysics

Advanced search

SLOW DEFORMATION WAVES IN THE SEISMIC REGIME AND GEOPHYSICAL FIELDS AT THE NORTHERN MARGIN OF THE AMUR PLATE

https://doi.org/10.5800/GT-2018-9-2-0353

Abstract

The interaction between the Amur, Pacific and Eurasian tectonic plates initiates seismic activity at the plate margins as well as in the plate periphery, as evidenced by intracontinental earthquakes. In the Amur plate, the dynamics of intercontinental seismicity is controlled by deformation wave fronts comprising a regular pattern of equidistant zones [Sherman, 2013]. According to [Trofimenko et al., 2015a, 2015b, 2016], maximum values of seismic activity in the range of magnitudes 2≤M≤4 also form a sequence of spatial cells in the form of seismic clusters from the east (Sakhalin – Sakh) to the west (the western boundary of the Baikal rift zone – BRZ ) (Fig. 1). One of the main characteristics of the seismic process is seismic activity migration given as sequential activation of seismogenic structures within the seismically active zones and on the global scale [Vikulin et al., 2012; Khain, Khalilov, 2008]. Direct observations show that crust deformation migrates from the Japan-Kuril-Kamchatka subduction zone towards the continent, and the estimated migration rates range from 10 to 140 km per year (e.g. [Ishii et al., 1978; Kasahara, 1979; Harada et al., 2003; Yoshioka et al., 2015]). In the Baikal and Amur regions (107–140°E), the fronts of deformation waves migrate at a rate of 5–20 km per year [Sherman, 2007, 2013]. Considering the order of magnitude, this rate is comparable to the rates of crust deformation migration from the Japan-Kuril-Kamchatka zone (10–100 km per year). Our studies show that the sequential activation of the seismic clusters in the northeastern segment of the Amur plate (Sakh – TanLu – Al-St) occurs at a rate of 1000 km per year [Trofimenko et al., 2015a] (Fig. 1). In the meridional tectonic structures, the shifting chains of maximum seismicity values are sequentially replaced by minimum values (i.e. inversion zones). Based on the spatial cycles with the phase shift of the maximum seismic activity values at the rate of 1000 km per year, it is possible to represent the dynamics of seismicity in the form of a process initiated by long-period stress waves/deformations. According to [Mogi, 1968; Kasahara, 1979; Malamud, Nikolaevskii, 1989; Saprygin et al., 1997; Harada et al., 2003; Bykov, 2005, 2014; Sherman, 2007, 2013, 2014; Milyukov et al., 2013], slow deformation waves of the global and regional scale are generated at the margins of lithospheric plates. Under this concept, the migration rate of seismic activity and the spatial extent of seismic cycles can be identified as the velocity and length of deformation waves. Using the data on seismicity of the most active region of the Baikal rift zone – the northwestern segment of the Amur plate, we have studied the periodic components of seismicity along the entire northern boundary of the Amur plate. An indirect evidence of the existence of deformation waves is the migration of anomalies of geophysical fields and its correlation with the migration of seismic activity. The space-time anomalies of the magnetic and gravity fields were studied in the South Yakutian geodynamic polygon [Trofimenko, 1990; Trofimenko, Grib, 2003, 2016], and the indicators of deformation waves were revealed in the seismic regime and the geophysical fields at the northern margin of the Amur plate. The sequential manifestation of anomalies in the magnetic and gravity fields is associated with the activation of latitudinal tectonic structures. Our estimations show that the geophysical anomalies migrate at different rates, from 100 to 1000 km per year. Based on the results obtained in our study and their comparison with other available data, the dynamics of seismicity along the northern margin of the Amur plate is identified as a wave process.

About the Authors

S. V. Trofimenko
Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS; Technical Institute (branch) of M.K. Ammosov North-Eastern Federal University
Russian Federation

Doctor of Geology and Mineralogy, Lead Researcher,

65 Kim Yu Chen Street, Khabarovsk 680000, 

16 Kravchenko street, Neryungri 678960



V. G. Bykov
Yu.A. Kosygin Institute of Tectonics and Geophysics, Far East Branch of RAS
Russian Federation

Doctor of Physics and Mathematics, Deputy Director,

65 Kim Yu Chen Street, Khabarovsk 680000



N. N. Grib
Technical Institute (branch) of M.K. Ammosov North-Eastern Federal University
Russian Federation

Doctor of Technical Sciences, Professor,

16 Kravchenko street, Neryungri 678960



References

1. Adushkin V.V., Oparin V.N., 2014. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part III. Journal of Mining Science 50 (4), 623–645. https://doi.org/10.1134/S1062739114040024.

2. Barabanov V.L., Grinevsky L.O., Belikov V.M., Ishankuliev R.L., 1994. On migration of crustal earthquakes. In: A.V. Nikolaev (Ed.), Dynamic processes in geophysical medium. Nauka, Moscow, p. 149–167 (in Russian) [Барабанов В.Л., Гриневский Л.О., Беликов В.М., Ишанкулиев Г.Л. О миграции коровых землетрясений // Динамические процессы в геофизической среде / Ред. А.В. Николаев. М.: Наука, 1994. С. 149–167].

3. Barenblatt G.I., Keilis-Borok V.I., Monin A.S., 1983. Filtration model of an earthquake sequence. Doklady AN SSSR 269 (4), 831–834 (in Russian) [Баренблатт Г.И., Кейлис-Борок В.И., Монин А.С. Фильтрационная модель последовательности землетрясений // Доклады АН СССР. 1983. Т. 269. № 4. С. 831–834].

4. Barth A., Wenzel F., 2010. New constraints on the intraplate stress field of the Amurian plate deduced from light earthquake focal mechanisms. Tectonophysics 482 (1–4), 160–169. https://doi.org/10.1016/j.tecto.2009.01.029.

5. Bornyakov S.А., Panteleev I.A., Tarasova А.А., 2016. Discrete deformation wave dynamics in shear zones: physical modelling results. Geodynamics & Tectonophysics 7 (2), 289–302 (in Russian) [Борняков С.А., Пантелеев И.А., Тарасова А.А. Дискретно-волновая динамика деформаций в сдвиговой зоне: результаты физического моделирования // Геодинамика и тектонофизика. 2016. Т. 7. № 2. С. 289–302]. https://doi.org/10.5800/GT-2016-7-2-0207.

6. Bykov V.G., 2005. Strain waves in the Earth: theory, field data, and models. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (11), 1158–1170. Bykov V.G., 2014. Sine-Gordon equation and its application to tectonic stress transfer. Journal of Seismology 18 (3), 497–510. https://doi.org/10.1007/s10950-014-9422-7.

7. Bykov V.G., 2015. Nonlinear waves and solitons in models of fault block geological media. Russian Geology and Geophysics 56 (5), 793–803. https://doi.org/10.1016/j.rgg.2015.04.010.

8. Di Giovambattista R.D., Tyupkin Y., 2001. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy). Journal of Seismology 5 (2), 147–156. https://doi.org/10.1023/A:1011497601121.

9. Garagash I.A., 1999. Model showing formation of a tectonomagnetic effect in a fault zone under shear. Russian Journal of Earth Sciences 1 (3), 199–204 (in Russian) [Гарагаш И.А. Модель формирования тектономагнитного эффекта в зоне разлома при сдвиге // Российский журнал наук о Земле. 1999. Т. 1. № 3. С. 199–204].

10. Gorbunova E.A., Sherman S.I., 2016. The probability of strong (M≥7.5) earthquakes in fault zones of Central Asia (tectonophysical analysis). Geodynamics & Tectonophysics 7 (2), 303–314 (in Russian) [Горбунова Е.А., Шерман С.И. Вероятность сильных (М≥7.5) землетрясений в зонах разломов Центральной Азии (тектонофизический анализ) // Геодинамика и тектонофизика. 2016. Т. 7. № 2. С. 303–314]. https://doi.org/10.5800/GT-2016-7-2-0208.

11. Harada M., Furuzawa T., Teraishi M., 2003. Temporal and spatial correlations of the strain field in tectonic active region, southern Kyusyu, Japan. Journal of Geodynamics 35 (4–5), 471–481. https://doi.org/10.1016/S0264-3707(03)00008-5.

12. Imaev V.S., Imaeva L.P., Koz’min B.M., Nikolaev V.V., Semenov R.M., 2003. Buffer seismogenic structures between the Eurasian and Amur lithospheric plates. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 22 (6), 55–61 (in Russian) [Имаев В.С., Имаева Л.П., Козьмин Б.М., Николаев В.В., Семенов Р.М. Буферные сейсмогенные сруктуры между Евразийской и Амурской литосферными плитами // Тихоокеанская геология. 2003. Т. 22. № 6. С. 55–61].

13. Imaeva L.P., Imaev V.S., Koz’min B.M., 2012. Seismogeodynamics of the Aldan-Stanovoi block. Russian Journal of Pacific Geology 6 (1), 1–12. https://doi.org/10.1134/S1819714012010071.

14. Ishii H., Sato T., Takagi A., 1978. Characteristics of strain migration in the northeastern Japanese Arc (I) – Propagation characteristics. The Science Reports of the Tohoku University, Series 5, Geophysics 25, 83–90. Kasahara K., 1979. Migration of crustal deformation. Tectonophysics 52 (1–4), 329–341. https://doi.org/10.1016/0040-1951(79)90240-3.

15. Khain V.E., Khalilov E.N., 2008. Space-Time Patterns of Seismic and Volcanic Activity. SWB, Burgas, 304 p. (in Russian) [Хаин В.Е., Халилов Э.Н. Пространственно-временные закономерности сейсмической и вулканической активности. Бургас: SWB, 2008. 304 с.].

16. Kuzmin Yu.O., 2014. Recent geodynamics of fault zones: faulting in real time scale. Geodynamics & Tectonophysics 5 (2), 401–443 (in Russian) [Кузьмин Ю.О. Современная геодинамика разломных зон: разломообразование в реальном масштабе времени // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 401–443]. https://doi.org/10.5800/GT-2014-5-2-0135.

17. Kuzmin Yu.O., Zhukov V.S., 2012. Modern Geodynamics and Variations in Physical Properties of Rocks. Gornaya Kniga, Moscow, 261 p. (in Russian) [Кузьмин Ю.О., Жуков В.С. Современная геодинамика и вариации физических свойств горных пород. М.: Горная книга, 2012. 261 с.]. Levin B.V., Kim Chun Un, Nagornykh T.V., 2008. Seismicity of Primorye and the Amur region in 1888–2008.

18. Vestnik DVO RAN (6), 16–22 (in Russian) [Левин Б.В., Ким Чун Ун, Нагорных Т.В. Сейсмичность Приморья и Приамурья в 1888–2008 гг.// Вестник ДВО РАН. 2008. № 6. С. 16–22].

19. Lunina O.V., Gladkov A.S., Gladkov A.A., 2012. Systematization of active faults for the assessment of the seismic hazard. Russian Journal of Pacific Geology 6 (1), 42–51. https://doi.org/10.1134/S1819714012010101.

20. Malamud A.S., Nikolaevskii V.N., 1989. Cycles of Earthquakes and Tectonic Waves. Donish, Dushanbe, 140 p. (in Russian) [Маламуд А.С., Николаевский В.Н. Циклы землетрясений и тектонические волны. Душанбе: Дониш, 1989. 140 с.].

21. Milyukov V., Mironov A., Kravchuk V., Amoruso A., Crescentini L., 2013. Global deformations of the Eurasian plate and variations of the Earth rotation rate. Journal of Geodynamics 67, 97–105. https://doi.org/10.1016/j.jog.2012.05.009.

22. Mogi K., 1968. Migration of seismic activity. Bulletin of the Earthquake Research Institute Tokyo University 46, 53–74.

23. Nikolaevskii V.N., 1996. Geomechanics and Fluid Dynamics. Nedra, Moscow, 447 p. (in Russian) [Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.].

24. Ovsyuchenko A.N., Trofimenko S.V., Marakhanov A.V., Karasev P.S., Rogozhin E.A., 2009a. Source zones of strong earthquakes in southern Yakutia as inferred from paleoseismogeological data. Izvestiya, Physics of the Solid Earth 45 (2), 101–117. https://doi.org/10.1134/S1069351309020025.

25. Ovsyuchenko A.N., Trofimenko S.V., Marakhanov A.V., Karasev P.S., Rogozhin E.A., Imaev V.S., Nikitin V.M., Grib N.N., 2009b. Detailed geological-geophysical studies of active fault zones and the seismic hazard in the South Yakutia region. Russian Journal of Pacific Geology 3 (4), 356–373. https://doi.org/10.1134/S1819714009040046.

26. Ovsyuchenko A.N., Trofimenko S.V., Marakhanov A.V., Karasev P.S., Rogozhin E.A., 2010. Seismotectonics of the transitional region from the Baikal rift zone to orogenic rise of the Stanovoi range. Geotectonics 44 (1), 25–44. https://doi.org/10.1134/S0016852110010036.

27. Rogozhin E.A., Ovsyuchenko A.N., Trofimenko S.V., Marakhanov A.V., Karasev P.S., 2007. Seismotectonics of the junction zone in the Baikal rift zone and the orogenic uplift of the Stanovoi range. In: Geophysical research. Issue 8. IPE RAS, Moscow, p. 81–116 (in Russian) [Рогожин Е.А., Овсюченко А.Н., Трофименко С.В., Мараханов А.В., Карасев П.С. Сейсмотектоника зоны сочленения структур Байкальской рифтовой зоны и орогенного поднятия Станового хребта // Геофизические исследования. Вып. 8. М.: ИФЗ РАН, 2007. С. 81–116].

28. Sankov V.А., 2014. Recent geodynamics of intracontinental areas: instrumental and geomorphological assessment of crustal movements and deformation in Central Asia. Geodynamics & Tectonophysics 5 (1), 159–182 (in Russian) [Саньков В.А. Современная геодинамика внутриконтинентальных областей: инструментальные и геологогеоморфологические оценки движений и деформаций земной коры Центральной Азии // Геодинамика и тектонофизика. 2014. Т. 5. № 1. С. 159–182]. https://doi.org/10.5800/GT-2014-5-1-0122.

29. Saprygin S.M., Vasilenko N.F., Soloviev V.N., 1997. Propagation of the wave of tectonic stresses through the Eurasian plate in 1978–1983. Geologiya i Geofizika (Russian Geology and Geophysics) 38 (3), 701–709. Sherman S.I., 2007. New data on regularities of fault activation in the Baikal rift system and the adjacent territory. Doklady Earth Sciences 415 (1), 794–798. https://doi.org/10.1134/S1028334X07050303.

30. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2), 83–117 (in Russian) [Шерман С.И. Деформационные волны как триггерный механизм сейсмической активности в сейсмических зонах континентальной литосферы // Геодинамика и тектонофизика. 2013. Т. 4. № 2. С. 83–117]. https://doi.org/10.5800/GT-2013-4-2-0093.

31. Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House “Geo”, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.].

32. Stognii V.V., Smelov A.P., Stognii G.A., 1996. Deep structure of the Aldanian shield. Geologiya i Geofizika (Russian Geology and Geophysics) 37 (10), 88–97 (in Russian) [Стогний В.В., Смелов А.П., Стогний Г.А. Глубинное строение Алданского щита // Геология и геофизика. 1996. Т. 37. № 10. С. 88–97].

33. Timofeev V.Yu., Ardyukov D.G., Solov’ev V.M., Shibaev S.V., Petrov A.F., Gornov P.Yu., Shestakov N.V., Boiko E.V., Timofeev A.V., 2012. Plate boundaries in the Far East region of Russia (from GPS measurement, seismic-prospecting, and seismological data). Russian Geology and Geophysics 53 (4), 376–391. https://doi.org/10.1016/j.rgg.2012.03.002.

34. Trofimenko S.V., 1990. High-precision gravimetric observations in low temperature conditions. In: Geophysical surveys in Yakutia. YSU Publishing House, Yakutsk, p. 54–60 (in Russian) [Трофименко С.В. Высокоточные гравиметрические наблюдения при условии низких температур // Геофизические исследования в Якутии. Якутск: Изд-во ЯГУ, 1990. С. 54–60].

35. Trofimenko S.V., 2010. Tectonic interpretation of the statistical model of azimuth distributions of the anomalies of gravity fields of the Aldan shield. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 29 (3), 64–77 (in Russian) [Трофименко С.В. Тектоническая интерпретация статистической модели распределений азимутов аномалий гравимагнитных полей Алданского щита // Тихоокеанская геология. 2010. Т. 29. № 3. С. 64–77].

36. Trofimenko S.V., 2016. Tectonic model of seismicity for the northeastern segment of the Amur plate in the Earth’s twophased rotation. Russian Journal of Pacific Geology 10 (6), 427–434. https://doi.org/10.1134/S1819714016060075.

37. Trofimenko S.V., Bykov V.G., Kolodeznikov I.I., 2015a. Spatial distribution of earthquake epicenters in the northeastern segment of the Amur microplate in various phases of the Earth rotation. Nauka i Obrazovanie (Science and Education) (4), 41–44 (in Russian) [Трофименко С.В., Быков В.Г., Колодезников И.И. Пространственное распределение эпицентров землетрясений северо-восточного сегмента Амурской микроплиты в различных фазах вращения Земли // Наука и образование. 2015. № 4. С. 41–44].

38. Trofimenko S.V., Bykov V.G., Merkulova T.V., 2015b. Seismicity migration in the zone of convergent interaction between the Amur plate and the Eurasian plate. Journal of Volcanology and Seismology 9 (3), 210–222. https://doi.org/10.1134/S0742046315030069.

39. Trofimenko S.V., Bykov V.G., Merkulova T.V., 2016. Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate. Journal of Seismology 21 (2), 277–286. https://doi.org/10.1007/s10950-016-9600-x.

40. Trofimenko S.V., Grib N.N., 2003. Non-tidal changes in gravity in the zones of influence of modern activated faults. In: Problems of seismology in the third millennium. Proceedings of the international conference (15–19 September 2003, Novosibirsk). Publishing House of SB RAS, Novosibirsk, p. 271–274 (in Russian) [Трофименко С.В., Гриб Н.Н. Неприливные изменения силы тяжести в зонах влияния современных активизированных разломов // Проблемы сейсмологии III-го тысячелетия: Материалы международной конференции (15–19 сентября 2003 г., г. Новосибирск). Новосибирск: Изд-во СО РАН, 2003. С. 271–274].

41. Trofimenko S.V., Grib N.N., 2016. Dynamics of geophysical medium parameters in the zones of active faults in South Yakutia. In: Modern geodynamics of Central Asia and hazardous natural processes: results of studies on quantitative basis. Proceedings of the 3rd All-Russia conference with participation of invited researchers from other countries (19–23 September 2016, Irkutsk). IEC SB RAS, Irkutsk, p. 294–296 (in Russian) [Трофименко С.В., Гриб Н.Н. Динамика параметров геофизической среды в зонах активных разломов Южной Якутии // Современная геодинамика Центральной Азии и опасные природные процессы: результаты исследований на количественной основе: Материалы III Всероссийского совещания с участием приглашенных исследователей из других стран (19–23 сентября 2016 г., г. Иркутск). Иркутск: ИЗК СО РАН, 2016. C. 294–296].

42. Vikulin A.V., Akmanova D.R., Vikulina S.A., Dolgaya A.A., 2012. Migration of seismic and volcanic activity as display of wave geodynamic process. Geodynamics & Tectonophysics 3 (1), 1–18. https://doi.org/10.5800/GT-2012-3-1- 0058.

43. Yoshioka S., Matsuoka Y., Ide S., 2015. Spatiotemporal slip distributions of three long-term slow slip events beneath the Bungo Channel, southwest Japan, inferred from inversion analyses of GPS data. Geophysical Journal International 201 (3), 1437–1455. https://doi.org/10.1093/gji/ggv022.


Review

For citations:


Trofimenko S.V., Bykov V.G., Grib N.N. SLOW DEFORMATION WAVES IN THE SEISMIC REGIME AND GEOPHYSICAL FIELDS AT THE NORTHERN MARGIN OF THE AMUR PLATE. Geodynamics & Tectonophysics. 2018;9(2):413-426. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0353

Views: 1346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)