Preview

Geodynamics & Tectonophysics

Advanced search

PETROGENESIS AND STRUCTURAL POSITION OF THE EARLY PROTEROZOIC CHARNOCKITES OF THE TATARNIKOVSKY MASSIF IN THE SOUTH SIBERIAN POST-COLLISIONAL MAGMATIC BELT OF THE SIBERIAN CRATON

https://doi.org/10.5800/GT-2018-9-2-0352

Abstract

The article reports on the geological, mineralogical, geochemical and isotope-geochemical studies of granitoids (charnockites) from the Tatarnikovsky massif located in the northern part of the Baikal uplift of the Siberian craton basement. The age of the studied granitoids is 1.85 Ga. Like other unmetamorphosed granitoids and associated volcanic, the granitoids dated 1.88–1.84 Ga are abundant in the southern area of the Siberian craton. These rocks are a part of the South Siberian post-collisional magmatic belt. The Tatarnikovsky granitoids form a series of small massifs confined to the Davan tectonic zone. However, unlike the rocks of the Davan zone, these granitoids have not been subjected to dynamometamorphism, mylonitization and metasomatism, and seem younger than the geologic structure of this zone. The formation of granitoids coincides in time with the youngest formations in the North Baikal volcanoplutonic belt (1.85–1.84 Ga). The Tatarnikovsky granitoids have two facies varieties – coarse-grained and medium-fine-grained porphyric, the transition being gradual. Considering the mineral composition of the granitoids, specifically the presence of orthopyroxene, these rocks can be classified as charnockites. The research results presented in this article are based on the study of charnockites in the Tatarnikovsky massif, the largest in the Tatarnikovsky complex. The chemical composition of the Tatarnikovsky coarse-grained granitoids corresponds to monzonite and syenite, and fine-grained porphyry granitoids are granosyenite. All the studied granitoids are close to alkaline and calc-alkaline, metaluminous (ASI=0.83–0.97), ferrous (FeO*/(FeO*+MgO)=0.86–0.89) granite, with high concentrations of Nb, Y, Zr, and Ba, and low concentrations of Sr. According to their geochemical characteristics, the Tatarnikovsky granitoids correspond to A-type granite. These rocks show negative values εNd(t)=–1.4…–3.5 and model age ТNdDM=2.4–2.5 Ga. The temperature estimated for the initial stages of crystallization of granitoid melts suggests that granitoids formed at high temperatures, 890–960°С (i.e. the zircon saturation temperature). The granitoid melts crystallized in hypabyssal conditions at the pressure of 2.2–2.9 kbar, as well as in conditions of low or moderate oxygen fugacity. According to the mineralogical, geochemical and isotope-geochemical data, the Tatarnikovsky charnockite could have resulted from melting of mafic rocks from the lower crust (gabbroid, and ferrodiorite) which are products of differentiation of the tholeiitic mantle magmas that had intruded into the base of the continental crust. Taking into account the high concentrations of Ba and the positive anomalies of Eu in the distribution spectra of rare-earth elements (REE) of the coarse-grained granitoids, it can be suggested that these granitoids are the products of partial melting of the crustalmafic source. The fine-grained porphyry granitoids with higher silica contents and lower Ba and Zr contents than those in the coarse-grained granitoids, as well as the negative anomalies of Eu in the REE distribution spectra, are the products of fractional crystallization of the granitoid melt. With regard to formation of the unified structure of the Siberian craton, the geodynamic setting for formation of the Tatarnikovsky charnockite is considered as postcollisional extension due to the fact that these rocks belong to the South Siberian post-collisional magmatic belt. However, on a more local scale of the Baikal uplift of the Siberian craton basement, we suggest that the intercontinental rifting setting was in place during the intrusion of the Tatarnikovsky granitoids, the rocks of the North Baikal volcanoplutonic belt, the granitoids of the Primorsky and Achadsky complexes that cross the rocks of the Akitkan fold belt, collision events in which ceased 1.98–1.97 Ga ago.

About the Authors

T. V. Donskaya
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Lead Researcher,

128 Lermontov street, Irkutsk 664033



A. M. Mazukabzov
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Lead Researcher,

128 Lermontov street, Irkutsk 664033



D. P. Gladkochub
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Corresponding Member of RAS, Director,

128 Lermontov street, Irkutsk 664033



References

1. Aleksandrov V.K., 1990. Thrust Faults and Overthrusts of Baikal Region. Nauka, Novosibirsk, 102 p. (in Russian) [Александров В.К. Надвиги и шарьяжные структуры Прибайкалья. Новосибирск: Наука, 1990. 102 с.].

2. Anderson J.L., 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences 87 (1–2), 125‒138. https://doi.org/10.1130/0-8137-2315-9.125.

3. Anderson J.L., Smith D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80 (5–6), 549‒559. https://doi.org/10.2138/am-1995-5-614.

4. Creaser R.A., White A.J.R., 1991. Yardea dacite – large-volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia. Geology 19 (1), 48–51. https://doi.org/10.1130/0091-7613(1991)019 2.3.CO;2.

5. Dall’Agnol R., Oliveira D.C., 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites. Lithos 93 (3–4), 215–233. https://doi.org/10.1016/j.lithos. 2006.03.065.

6. Didenko A.N., Vodovozov V.Y., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Mazukabzov А.М., Stanevich А.М., Bibikova Е.V., Kirnozova T.I., 2009. Palaeomagnetism and U-Pb dates of the Palaeoproterozoic Akitkan Group (South Siberia) and implications for pre-Neoproterozoic tectonics. In: S.M. Reddy, R. Mazumder, D.A.D. Evans, A.S. Collins (Eds.), Palaeoproterozoic supercontinents and global evolution. Geological Society, London, Special Publications, vol. 323, p. 145‒163. https://doi.org/10.1144/SP323.7.

7. Donskaya T.V., Bibikova E.V., Gladkochub D.P., Mazukabzov A.M., Bayanova T.B., De Waele B., Bukharov A.A., Kirnozova T.I., 2008. Petrogenesis and age of the felsic volcanic rocks from the North Baikal volcanoplutonic belt, Siberian craton. Petrology 16 (5), 422–447. https://doi.org/10.1134/S0869591108050020.

8. Donskaya T.V., Bibikova E.V., Mazukabzov A.M., Kozakov I.K., Gladkochub D.P., Kirnozova T.I., Plotkina Yu.V., Reznitsky L.Z., 2003. The Primorsky granitoid complex of western Cisbaikalia: geochronology and geodynamic typification. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (10), 968–979.

9. Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian craton. Petrology 13 (3), 229–252.

10. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., 2013a. Palaeoproterozoic granitoids of the Siberian craton: geochemical features and tectonic interpretation. In: Precambrian evolution and deep exploration of the continental lithosphere (7–9 October, 2013, Beijing, China). Abstract Volume. IAGR Conference Series № 15, p. 36‒38.

11. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Lepekhina E.N., 2016. Age and sources of the Paleoproterozoic premetamorphic granitoids of the Goloustnaya block of the Siberian craton: Geodynamic applications. Petrology 24 (6), 543–561. https://doi.org/10.1134/S0869591116050040.

12. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Presnyakov S.L., Bayanova T.B., 2013b. Paleoproterozoic granitoids of the Chuya and Kutima complexes (southern Siberian craton): age, petrogenesis, and geodynamic setting. Russian Geology and Geophysics 54 (3), 283–296. https://doi.org/10.1016/j.rgg.2013.02.004.

13. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Wingate M.T.D., 2014. Early Proterozoic postcollisional granitoids of the Biryusa block of the Siberian craton. Russian Geology and Geophysics 55 (7), 812–823. https://doi.org/10.1016/j.rgg.2014.06.002.

14. Donskaya T.V., Mazukabzov A.M., Bibikova E.V., Gladkochub D.P., Didenko A.N., Kirnozova T.I., Vodovozov V.Yu., Stanevich A.M., 2007. Stratotype of the Chaya Formation of the Akitkan Group in the North Baikal volcanoplutonic belt: age and time of sedimentation. Russian Geology and Geophysics 48 (9), 707–710. https://doi.org/10.1016/j.rgg.2007.08.001.

15. Donskaya T.V., Sal’nikova E.B., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2002. Early Proterozoic postcollision magmatism at the southern flank of the Siberian craton: new geochronological data and geodynamic implications. Doklady Earth Sciences 383 (2), 125–128.

16. Droop G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichometric criteria. Mineralogical Magazine 51, 431‒435. Eby G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 20 (7), 641‒644. https://doi.org/10.1130/0091-7613(1992)0202.3.CO;2.

17. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033‒2048. https://doi.org/10.1093/petrology/42.11.2033.

18. Frost B.R., Frost C.D., 2008. On charnockites. Gondwana Research 13 (1) 2008, 30–44. https://doi.org/10.1016/j.gr.2007.07.006.

19. Frost C.D., Frost B.R., 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology 25 (7), 647‒650. https://doi.org/10.1130/0091-7613(1997)0252.3.CO;2.

20. Frost C.D., Frost B.R., 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology 52 (1), 39–53. https://doi.org/10.1093/petrology/egq070.

21. Frost C.D., Frost B.R., Chamberlain K.R., Edwards B.R., 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming: a reduced rapakivi-type anorogenic granite. Journal of Petrology 40 (12), 1771–1802. https://doi.org/10.1093/petroj/40.12.1771.

22. Gladkochub D.P., Donskaya T.V., Reddy S.M., Poller U., Bayanova T.B., Mazukabzov A.M., Dril S., Todt W., Pisarevsky S.A., 2009. Palaeoproterozoic to Eoarchaean crustal growth in southern Siberia: a Nd-isotope synthesis. In: S.M. Reddy, R. Mazumder, D.A.D. Evans, A.S. Collins (Eds.), Palaeoproterozoic supercontinents and global evolution. Geological Society, London, Special Publications, vol. 323, p. 127–143. https://doi.org/10.1144/SP323.6.

23. Gladkochub D., Pisarevsky S., Donskaya T., Natapov L., Mazukabzov A., Stanevich A., Sklyarov E., 2006. Siberian craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (3), 169–174.

24. Ishihara S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27 (145), 293‒305. https://doi.org/10.11456/shigenchishitsu1951.27.293.

25. Johnson M.C., Rutherford M.J., 1989. Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology 17 (9), 837‒841. https://doi.org/10.1130/0091- 7613(1989)0172.3.CO;2.

26. Kushch L.V., Makrygina V.A., 2014. Comparison of 2.1–1.6 Ga fault-line alkaline metasomatic rocks and granitoids from regional fault zones on the southern framing of the Siberian craton. Russian Geology and Geophysics 55 (3), 323– 334. https://doi.org/10.1016/j.rgg.2014.01.014.

27. Kuznetsov V.G., Khrenov P.M. (Eds.), 1989. Geological map of the Irkutsk region and adjacent territories. Scale 1:500000. VSEGEI, Leningrad (in Russian) [Геологическая карта Иркутской области и сопредельных территорий / Ред. В.Г. Кузнецов, П.М. Хренов. Масштаб 1:500000. Л.: ВСЕГЕИ, 1989].

28. Larin A.M., Kotov A.B., Sal’nikova E.B., Kovach V.P., Makar’ev L.B., Timashkov A.N., Berezhnaya N.G., Yakovleva S.Z., 2000. New data on the age of granites of the Kodar and Tukuringra complexes, Eastern Siberia: geodynamic constraints. Petrology 8 (3), 238–249.

29. Larin A.M., Sal’nikova E.B., Kotov A.B., Glebovitsky V.A., Yakovleva S.Z., Sryvtsev N.A., Anisimova I.V., Tolkachev M.D., 2009. Age and tectonic setting of charnokites of the Tatarnik complex (northwestern part of the Baikal region). Doklady Earth Sciences 429A (9), 1447‒1450. https://doi.org/10.1134/S1028334X09090086.

30. Larin A.M., Sal’nikova E.B., Kotov A.B., Kovalenko V.I., Rytsk E.Yu., Yakovleva S.Z., Berezhnaya N.G., Kovach V.P., Buldygerov V.V., Sryvtsev N.A., 2003. The North Baikal volcanoplutonic belt: age, formation duration, and tectonic setting. Doklady Earth Sciences 392 (7), 963–967.

31. Larin A.M., Sal’nikova E.B., Kotov A.B., Makar’ev L.B., Yakovleva S.Z., Kovach V.P., 2006. Early Proterozoic syn- and postcollisional granites in the northern part of the Baikal fold area. Stratigraphy and Geological Correlation 14 (5), 463–474. https://doi.org/10.1134/S0869593806050017.

32. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magazine 61 (2), 295‒321. https://doi.org/10.1180/minmag.1997.061.405.13.

33. Levitskii V.I., Mel’nikov A.I., Reznitskii L.Z., Bibikova E.V., Kirnozova T.I., Kozakov I.K., Makarov V.A., Plotkina Yu.V., 2002. Early Proterozoic postcollisional granitoids in southwestern Siberian craton. Geologiya i Geofizika (Russian Geology and Geophysics) 43 (8), 679–692.

34. Loiselle M.C., Wones D.R., 1979. Characteristics and origin of anorogenic granites. In: Geological Society of America Abstracts with Programs 11, 468. Morimoto N., 1988. Nomenclature of pyroxenes. Mineralogy and Petrology 39 (1), 55–76. https://doi.org/10.1007/BF01226262.

35. Neymark L.A., Larin A.M., Yakovleva S.Z., Sryvtsev N.A., Buldygerov V.V., 1991. New data on age of the Akitkan group of Baikal-Patom fold area, from the results of U-Pb dating of zircons. Doklady AN SSSR 320 (1), 182–186 (in Russian) [Неймарк Л.А., Ларин А.М., Яковлева С.З., Срывцев Н.А., Булдыгеров В.В. Новые данные о возрасте пород акитканской серии Байкало-Патомской складчатой области по результатам U-Pb датирования цирконов // Доклады АН СССР. 1991. Т. 320. № 1. С. 182‒186].

36. Neymark L.A., Larin A.M., Nemchin A.A., Ovchinnikova G.V., Rytsk E.Y., 1998. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data. Petrology 6 (2), 124–148.

37. Nozhkin A.D., Bibikova E.V., Turkina O.M., Ponomarchuk V.A., 2003. Study of porphyritic subalkalic granites of the Taraka pluton (Yenisei Range). Geologiya i Geofizika (Russian Geology and Geophysics) 44 (9), 879–889.

38. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P., 2003. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (2), 341–350. https://doi.org/10.1016/S0584-8547(02)00151-9.

39. Pearce J.A., 1996. Sources and settings of granitic rocks. Episodes 19 (4), 120‒125. Petrova Z.I., Makrygina V.A., Antipin V.S., 1997. Petrological and geochemical correlations between rapakivi granites and acid volcanics in the southern fringing of the Siberian platform. Petrology 5 (3), 258–277.

40. Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage magmatic and metamorphic evolution in the Southern Siberian craton: Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.

41. Rosen O.M., 2003. The Siberian craton: Tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192.

42. Rosen O.M., Condie K.C., Natapov L.M., Nozhkin A.D., 1994. Archean and Early Proterozoic evolution of the Siberian craton: A preliminary assessment. In: K.C. Condie (Ed.), Archean crustal evolution. Elsevier, Amsterdam, p. 411‒459.

43. Savel’eva V.B., Bazarova E.P., 2012. The Early Proterozoic Primorskii complex of rapakivi granites (western Cisbaikalia): geochemistry, crystallization conditions, and ore potential. Russian Geology and Geophysics 53 (2), 147–168. https://doi.org/10.1016/j.rgg.2011.12.012.

44. Scoates J.S., Frost C.D., Mitchell J.N., Lindsley D.H., Frost B.R., 1996. Residual-liquid origin for a monzonite intrusion in a mid-Proterozoic anorthosite complex: the Sybille intrusion, Laramie anorthosite complex, Wyoming. Geological Society of America Bulletin 108 (11), 1357–1371. https://doi.org/10.1130/0016-7606(1996)108 2.3.CO;2.

45. Sharpenok L.N., Kostin A.E., Kukharenko E.A., 2013. Total-alkali-silica TAS diagram for chemical classification and identification of plutonic rocks. Regional’naya Geologiya i Metallogeniya (56), 40–50 (in Russian) [Шарпенок Л.Н., Костин А.Е., Кухаренко Е.А. TAS-диаграмма сумма щелочей – кремнезем для химической классификации и диагностики плутонических пород // Региональная геология и металлогения. 2013. № 56. С. 40–50].

46. Shokhonova M.N., Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Paderin I.P., 2010. Paleoproterozoic basaltoids in the North Baikal volcanoplutonic belt of the Siberian craton: age and petrogenesis. Russian Geology and Geophysics 51 (8), 815–832. https://doi.org/10.1016/j.rgg.2010.07.001.

47. Skjerlie K.P., Johnston A.D., 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. Journal of Petrology 34 (4), 785‒815. https://doi.org/10.1093/petrology/34.4.785.

48. Sryvtsev N.A., Sandimirova G.P., Kutyavin E.P., Koltsova T.V., Manuylova M.M., Plusnin G.S., 1980. About age the twopyroxene granitoids of Tatarnik complex of Northwest Baikal region. In: L.N. Ovchinnikov (Ed.), Geochronology of Eastern Siberia and the Russian Far East. Nauka, Moscow, p. 101‒110 (in Russian) [Срывцев Н.А., Сандимирова Г.П., Кутявин Э.П., Кольцова Т.В., Мануйлова М.М., Плюснин Г.С. О возрасте двупироксеновых гранитоидов татарниковского комплекса Северо-Западного Прибайкалья // Геохронология Восточной Сибири и Дальнего Востока / Ред. Л.Н. Овчинников. М.: Наука, 1980. С. 101–110].

49. Sun S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.), Magmatism in the oceanic basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

50. Turkina O.M., 2005. Proterozoic tonalites and trondhjemites of the southwestern margin of the Siberian craton: isotope geochemical evidence for the lower crustal sources and conditions of melt formation in collisional settings. Petrology 13 (1), 35–48.

51. Turkina O.M., Bibikova E.V., Nozhkin A.D., 2003. Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian craton. Doklady Earth Sciences 389 (2), 159–163.

52. Turkina O.M., Kapitonov I.N., 2017. Lu-Hf isotope composition of zircon as an indicator of the sources for Paleoproterozoic collisional granites (Sharyzhalgai uplift, Siberian craton). Russian Geology and Geophysics 58 (2), 149–164. https://doi.org/10.1016/j.rgg.2017.01.001.

53. Turkina O.M., Nozhkin A.D., Bayanova T.B., 2006. Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14 (3), 262–283. https://doi.org/10.1134/S0869591106030040.

54. Wakita H., Schmitt R.A., Rey P., 1970. Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples. In: Proceedings of the Apollo 11 Lunar Science Conference, p. 1685–1717.

55. Watson E.B., Harrison T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64 (2), 295‒304. https://doi.org/10.1016/0012-821X(83)90211-X.

56. Whalen J.B., Currie K.L., Chappel B.W., 1987. A-type granites: geochemical characteristics and petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407‒419. https://doi.org/10.1007/BF00402202.


Review

For citations:


Donskaya T.V., Mazukabzov A.M., Gladkochub D.P. PETROGENESIS AND STRUCTURAL POSITION OF THE EARLY PROTEROZOIC CHARNOCKITES OF THE TATARNIKOVSKY MASSIF IN THE SOUTH SIBERIAN POST-COLLISIONAL MAGMATIC BELT OF THE SIBERIAN CRATON. Geodynamics & Tectonophysics. 2018;9(2):391-412. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0352

Views: 2510


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)