Preview

Геодинамика и тектонофизика

Расширенный поиск

ГЛУБИННОЕ СТРОЕНИЕ И МОДЕЛЬ НЕОАРХЕЙСКОЙ ЭВОЛЮЦИИ СЕВЕРО‐АМЕРИКАНСКОГО КРАТОНА

https://doi.org/10.5800/GT-2018-9-2-0350

Полный текст:

Аннотация

Cтроение архейской коры Северной Америки представлено на базе синтеза геолого‐геофизической информации (сейсмопрофили программы LITHOPROBE, карты аномальных магнитного и гравитационного полей, данные сейсмотомографических исследований литосферы). В своей работе авторы опирались на опыт, полученный при изучении Восточно‐Европейского кратона в рамках российской программы глубинных геолого‐геофизических исследований. Ювенильная неоархейская кора, содержащая фрагменты переработанной мезопалеоархейской коры, заключена в асимметричной округло‐овальной области, где распределение геофизических, структурно‐тектонических и метаморфических характеристик подчинено концентрической зональности. Центральная зона охватывает впадину Гудзонова залива. В строении Внутренней зоны (северо‐восточная и северная часть провинции Сьюпириор) преобладают плутонические, вулканогенные и осадочные породы, сформированные и/или метаморфизованные в условиях гранулитовой фации. Внешняя зона охватывает южную часть провинции Сьюпириор и провинции Херн и Рэй. В статье представлена трехмерная модель глубинного строения южной части провинции Сьюпириор. Формирование коры в южной части провинции Сьюпириор стало результатом рифтинга и частичного разрыва континентальной коры, кратковременного раскрытия линейных океанов, последовательной субдукции в северном направлении и аккреции древних континентальных фрагментов и неоархейских океанических и островодужных террейнов между ~2.78 и ~2.70 млрд лет. Последующие события в эпиконтинентальной обстановке, в том числе формирование метаосадочных поясов, метаморфизм гранулитовой фации и интенсивное рудообразование, заключены в интервале от ~2.71 до ~2.63 млрд лет. Литосферу Северной Америки в границах архейского континента можно представить в виде уплощенного перевернутого конуса, вершина которого (литосферный киль) расположена на глубине ~350 км. Впадина Гудзонова залива располагается непосредственно над литосферным килем. Ряд главных особенностей строения и эволюции архейской коры Северо‐Американского кратона, прежде всего овально‐концентрическая зональность, важная роль высокотемпературных магматических и метаморфических процессов, преимущественно внутриконтинентальные обстановки магматизма и осадконакопления, указывает на ведущую роль процессов мантийно‐плюмового типа. Модель неоархейской эволюции Северо‐Американского кратона демонстрирует ведущую роль процессов мантийно‐плюмового типа, относящихся к классу суперплюмов. Неоархейский кратон Северной Америки является одним из наиболее ярких в ряду близких по содержанию объектов, зафиксированных практически на всех континентах ~2.75 млрд лет назад. К числу их важнейших особенностей относятся: 1) синхронность формирования в интервале между 2.79 и 2.58 млрд лет; 2) преимущественно внутриконтинентальное развитие; 3) преобладание овальных в плане синформных тектонических структур различного ранга с той или иной формой концентрической зональности; 4) высокотемпературный магматизм (как правило, с участием эндербит‐чарнокитов и габброанортозитов) и метаморфизм гранулитовой фации; 5) часто повторяющееся сочетание ассоциаций горных пород высокого уровня метаморфизма (гранулитовой и высокотемпературной амфиболитовой фации) и низкого – умеренного метаморфизма, зеленосланцевой и эпидот‐амфиболитовой фации; 6) наличие нижнекорового гранулит‐базитового слоя, сформированного и деформированного на заключительной стадии эндогенной активности; 7) мощная литосфера, максимальная глубина которой в области литосферного киля достигает 250–350 км.

Об авторах

М. В. Минц
Геологический институт РАН
Россия

докт. геол.-мин. наук, зав. лабораторией,

119017, Москва, Пыжевский пер., 7



Т. Б. Афонина
Геологический институт РАН
Россия

ведущий инженер,

119017, Москва, Пыжевский пер., 7



Список литературы

1. Artemieva I.M., Thybo H., Kaban M.K., 2006. Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 11–41. http://dx.doi.org/10.1144/GSL.MEM.2006.032.01.02.

2. Ashton K.E., Card C.D., Hartlaub R.P., Bethune K.M., Rayner N., 2010. Tectonic history of the southwestern margin of the Rae Province in Northwestern Saskatchewan. AAPG Search and Discovery, Article #90172, Calgary, Alberta, Canada, May 10–14, 2010, p. 1–4.

3. Ashton K.E., Rayner N.M., Bethune K.M., 2009. New U-Pb zircon ages from the Uranium City area: 2.94 and 2.61 Ga granitic magmatism, 2.37 Ga (Arrowsmith) and 1.93 Ga (Taltson) metamorphism, and 2.17 Ga detritus in a Murmac Bay Group pelite. In: Summary of investigations 2009, vol. 2. Saskatchewan Geological Survey, Saskatchewan Ministry of Energy and Resources, Miscellaneous Report 2009-4.2, CD-ROM, Paper.

4. Ashwal L.D., Morrison D.A., Phinney W.C., Wood J., 1983. Origin of Archaean anorthosites: Evidence from the Bad Vermilion Lake anorthosite complex, Ontario. Contributions to Mineralogy and Petrology 82 (2–3), 259–273. https://doi.org/10.1007/BF01166620.

5. Aspler L.B., Chiarenzelli J.R., 1998. Two Neoarchaean supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology 120 (1–4), 75–104. https://doi.org/10.1016/S0037-0738(98)00028-1.

6. Barnett P.J., Crabtree D.C., Clarke S.A., 2007. Investigation of the Overburden Signature of the Engagement Zone, a Diamond-Bearing, Lamprophyric, Heterolithic Breccia, Wawa, Ontario. Ontario Geological Survey Open File Report 6197, 21 p.

7. Barrie C.T., Hannington M.D., Bleeker W., 1999. The Giant Kidd Creek Volcanic-Associated Massive Sulfide Deposit, Abitibi Subprovince, Canada. In: C.T. Barrie, M.D. Hannington (Eds.), Volcanic-associated massive sulfide deposits: Processes and examples in modern and ancient settings. Reviews in Economic Geology, vol. 8, p. 247–260. https://doi.org/10.5382/Rev.08.011.

8. Bastow D., Eaton D.W., Kendall J.-M., Helffrich G., Snyder D.B., Thompson D.A., Wookey J., Darbyshire F.A., Pawlak A.E., 2015. The Hudson Bay Lithospheric Experiment (HuBLE): insights into Precambrian plate tectonics and the de velopment of mantle keels. In: N.M.W. Roberts, M. van Kranendonk, S. Parman, S. Shirey, P.D. Clift (Eds.), Continent formation through time. Geological Society, London, Special Publications, vol. 389, p. 41–67. https://doi.org/10.1144/SP389.7.

9. Bateman R., Ayer J.A., Dubé B., Hamilton M.A., 2005. The Timmins–Porcupine Gold Camp, Northern Ontario: The anatomy of an Archaean Greenstone Belt and its gold Mineralization: Discover Abitibi Initiative. Laurentian University, Sudbury, Ontario. Open File Report 6158, 90 p.

10. Beals C.S., 1968. On the possibility of a catastrophic origin for the great arc of eastern Hudson Bay. In: C.S. Beals (Ed.), Science, history and Hudson Bay, vol. 2. Ottawa, Ontario, Canada Department of Energy, Mines and Resources, p. 985–999.

11. Bédard J.H., Harris L.B., 2014. Neoarchaean disaggregation and reassembly of the Superior craton. Geology 42 (11), 951–954. https://doi.org/10.1130/G35770.1.

12. Bédard J.H., Harris L.B., Thurston P.C., 2013. The hunting of the snArc. Precambrian Research 229, 20–48. https://doi.org/10.1016/j.precamres.2012.04.001.

13. Berzin R.G., Pavlenkova N.I., 2002. CDP and DSS data along the Uchta-Kemi profile (the Baltic Shield). Tectonophysics 355 (1–4), 187–200. https://doi.org/10.1016/S0040-1951(02)00141-5.

14. Bethune K.M., Scammell R.J., 2002. The Archaean Mary River Group and its basement, Eqe Bay area, north-central Baffin Island: implications for the nature and extent of Rae Province and the Rae Superior connection. GAC-MAC Abstract, vol. 27, p. 10.

15. Bickford M.E., Mock T.D., Steinhart III W.E., Collerson K.D., Lewry J.F., 2005. Origin of the Archean Sask craton and its extent within the Trans-Hudson orogen: evidence from Pb and Nd isotopic compositions of basement rocks and post-orogenic intrusions. Canadian Journal of Earth Sciences 42 (4), 659–684. https://doi.org/10.1139/e04-064.

16. Blackburn C.E., Geo P., 2010. Report on Selected Precambrian Environments in the Province of Ontario for Ontario Parks, Ministry of Natural Resources. Blackburn Geological Services, Victoria, B.C., Canada, 51 p.

17. Bleeker W., 2003. The late Archaean record: a puzzle in ca. 35 pieces. Lithos 71 (2–4), 99–134. https://doi.org/10.1016/j.lithos.2003.07.003.

18. Bleeker W., Ketchum J.W.F., Davis W.J., 1999b. The Central Slave Basement Complex, Part II: age and tectonic significance of high-strain zones along the basement–cover contact. Canadian Journal of Earth Sciences 36 (7), 1111–1130. https://doi.org/10.1139/e99-007.

19. Bleeker W., Ketchum J.W.F., Jackson V.A., Villeneuve M.E., 1999a. The Central Slave Basement Complex, Part I: its structural topology and autochthonous cover. Canadian Journal of Earth Sciences 36 (7), 1083–1109. https://doi.org/10.1139/e98-102.

20. Blenkinsop T.G., 2011. Archaean magmatic granulites, diapirism, and Proterozoic reworking in the Northern Marginal Zone of the Limpopo Belt. In: D.D. van Reenen, J.D. Kramers, S. McCourt, L.L. Perchuk (Eds.), Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geological Society of America Memoirs, vol. 207, p. 1–24. https://doi.org/10.1130/2011.1207(13).

21. Bogdanova S.V., 1986. The Crust of the Russian Platform in the Early Precambrian (Exemplified on the Volga-Ural Segment). Nauka, Moscow, 224 p. (in Russian) [Богданова С.В. Земная кора Русской плиты в раннем докембрии (на примере Волго-Уральского сегмента). М.: Наука, 1986. 224 с.].

22. Bogdanova S., Gorbatschev R., Garetsky R.G., 2005. EUROPE. East European Craton. In: R.C. Selley, L.R.M. Cocks, I.R. Plimer (Eds.), Encyclopedia of Geology, vol. 2. Elsevier, Amsterdam, p. 34–49. https://doi.org/10.1016/B0-12-369396-9/00426-3.

23. Boily M., Leclair A., Maurice C., Bédard J.H., David J., 2009. Paleo- to Mesoarchaean basement recycling and terrane definition in the Northeastern Superior Province, Québec, Canada. Precambrian Research 168 (1–2), 23–44. https://doi.org/10.1016/j.precamres.2008.07.009.

24. Bouzidi Y., Schmitt D.R., Burwash R.A., Kanasewich E.R., 2002. Depth migration of deep seismic reflection profiles: crustal thickness variations in Alberta. Canadian Journal of Earth Sciences 39 (3), 331–350. https://doi.org/10.1139/E01-080.

25. Bowring S.A., Williams I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology 134 (1), 3–16. https://doi.org/10.1007/s004100050465.

26. Bradley D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews 108 (1–2), 16–33. https://doi.org/10.1016/j.earscirev.2011.05.003.

27. Braile L.W., Chiang C.S., 1986. The Continental Mohorovičić Discontinuity: Results from Near-Vertical and Wide-Angle Seismic Reflection Studies. In: M. Barazangi, L. Brown (Eds.), Reflection seismology: a global perspective. AGU Geodynamics Series, vol. 13, p. 257–272. https://doi.org/10.1029/GD013p0257.

28. Brookfield M.E., 2006. The great arc of eastern Hudson Bay, Canada: part of the largest multi-ringed impact basin on Earth? Geological Society of America. Philadelphia Annual Meeting (22–25 October 2006). Abstracts with Programs, vol. 38 (7), p. 299.

29. Brown M., 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193–234. https://doi.org/10.2747/0020-6814.49.3.193.

30. Brown M., 2009. Metamorphic patterns in orogenic systems and the geological record. In: P.A. Cawood, A. Kröner (Eds.), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, vol. 318, p. 37–74. https://doi.org/10.1144/SP318.2.

31. Burov E., Gerya T., 2014. Asymmetric three-dimensional topography over mantle plumes. Nature 513 (7516), 85–89. https://doi.org/10.1038/nature13703.

32. Burov E., Guillou-Frottier L., 2005. The plume head – continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International 161 (2), 469–490. https://doi.org/10.1111/j.1365-246X.2005.02588.x.

33. Cadéron S., Trzcienski W.E., Bédard J.H., Goulet N., 2005. An occurrence of sapphirine in the Archean Superior Province, Northern Quebec. The Canadian Mineralogist 43 (1), 463–478. https://doi.org/10.2113/gscanmin.43.1.463.

34. Calvert A.J., Sawyer E.W., Davis W.J., Ludden J.N., 1995. Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375 (6533), 670–674. https://doi.org/doi:10.1038/375670a0.

35. Carbonell R., Levander A., Kind R., 2013. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints. Tectonophysics 609, 353–376. https://doi.org/10.1016/j.tecto.2013.08.037.

36. Card K.D., 1990. A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research 48 (1–2), 99–156. https://doi.org/10.1016/0301-9268(90)90059-Y.

37. Chamberlain K.R., Frost C.D., Frost B.R., 2003. Early Archaean to Mesoproterozoic evolution of the Wyoming Province: Archaean origins to modern lithospheric architecture. Canadian Journal of Earth Sciences 40 (10), 1357–1374. https://doi.org/10.1139/E03-054.

38. Cloetingh S., Burov E., Francois E., 2013. Thermo-mechanical controls on intra-plate deformation and the role of plume-folding interactions in continental topography. Gondwana Research 24 (3–4), 815–837. https://doi.org/10.1016/j.gr.2012.11.012.

39. Clowes R.M., 2010. Initiation, development, and benefits of Lithoprobe – shaping the direction of Earth science research in Canada and beyond. Canadian Journal of Earth Sciences 47 (4), 291–314. https://doi.org/10.1139/ E09-074.

40. Clowes R.M., Burianyk M.J.A., Gorman A.R., Kanasewich E.R., 2002. Crustal velocity structure from SAREX, the Southern Alberta Refraction Experiment. Canadian Journal of Earth Sciences 39 (3), 351–373. https://doi.org/10.1139/E01-070.

41. Condie K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163 (1–4), 97–108. https://doi.org/10.1016/S0012-821X(98)00178-2.

42. Condie K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge, 306 p.

43. Condie K.C., Aster R.C., 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research 180 (3–4), 227–236. https://doi.org/10.1016/j.precamres.2010.03. 008.

44. Cook F.A., White D.J., Jones A.G., Eaton D.W.S., Hall J., Clowes R.M., 2010. How the crust meets the mantle: Lithoprobe perspectives on the Mohorovičić discontinuity and crust–mantle transition. Canadian Journal of Earth Sciences 47 (4), 315–351. https://doi.org/10.1139/E09-076.

45. Corcoran P.L., Mueller W.U., 2007. Time-transgressive Archaean unconformities underlying molasses basin-fill successions of dissected oceanic arcs, Superior Province, Canada. The Journal of Geology 115 (6), 655–674. https://doi.org/10.1086/521609.

46. Corfu F., Lin S., 2000. Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba. Canadian Journal of Earth Sciences 37 (9), 1275–1286. https://doi.org/10.1139/e00-043.

47. Corfu F., Stone D., 1998. Age structure and orogenic significance of the Berens River composite batholiths, western Superior Province. Canadian Journal of Earth Sciences 35 (10), 1089–1109. https://doi.org/10.1139/e98-056.

48. Corrigan D., Nadeau L., Brouilette P., Wodicka N., Houlé M.G., Tremblay T., Machado G., Keating P., 2013. Overview of the GEM Multiple Metals – Melville Peninsula Project, Central Melville Peninsula, Nunavut. Geological Survey of Canada, Current Research 2013-19. 21 p. https://doi.org/10.4095/292862.

49. Dahl P.S., Hamilton M.A., Wooden J.L., Foland K.A., Frei R., McCombs J.A., Holm D.K., 2006. 2480 Ma mafic magmatism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons. Canadian Journal of Earth Sciences 43 (10), 1579–1600. https://doi.org/10.1139/e06-066.

50. Daigneault R., Mueller W.U., Chown E.H., 2004. Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. Chapter 2.4. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller, O. Catuneanu (Eds.), The Precambrian Earth: tempos and events. Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, p. 88–103.

51. Darbyshire F.A., Eaton D.W., Bastow I.D., 2013. Seismic imaging of the lithosphere beneath Hudson Bay: episodic growth of the Laurentian mantle keel. Earth and Planetary Science Letters 373, 179–193, https://doi.org/10.1016/j.epsl.2013.05.002.

52. Davis W.J., Hanmer S., Sandeman H.A., 2004. Temporal evolution of the Neoarchaean Central Hearne supracrustal belt: rapid generation of juvenile crust in a suprasubduction zone setting. Precambrian Research 134 (1–2), 85–112. https://doi.org/10.1016/j.precamres.2004.02.002.

53. Davis W.J., Zaleski E., 1998. Geochronological investigations of the Woodburn Lake Group, western Churchill Province, Northwest Territories: preliminary results. Geological Survey of Canada, Current Research 1998-F, p. 89–97.

54. Dobretsov N.L., Kirdyashkin A.A., Kirdyashkin A.G., 2006. Diameter and formation time of plume head at the base of refractory lithospheric layer. Doklady Earth Sciences 406 (1), 56–60. https://doi.org/10.1134/S1028334X060 10144.

55. Donohue C.L., Essene E.J., 2005. Granulite facies conditions preserved in vanadium- and chromium-rich metapelites from the Wind River Range, WY. Canadian Mineralogist 43 (1), 495–511. https://doi.org/10.2113/gscanmin.43. 1.495.

56. Dubé B., Gosselin P., 2007. Greenstone-hosted quartz-carbonate vein deposits. In: W.D. Goodfellow (Ed.), Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 49–73.

57. Eaton D.W., Ross G.M., Clowes R.M., 1999. Seismic-reflection and potential-field studies of the Vulcan structure, Western Canada: a Paleoproterozoic Pyrenees? Journal of Geophysical Research: Solid Earth 104 (B10), 23255– 23269. https://doi.org/10.1029/1999JB900204.

58. Ernst R., Bleeker W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47 (5), 695–739. https://doi.org/10.1139/E10-025.

59. Ernst R.E., Buchan K.L., 2003. Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences 31, 469–523. https://doi.org/10.1146/annurev.earth.31.100901.145500.

60. Evans D.A.D., Mitchell R.N., Kilian T.M., Panzik J.E., 2010. Reconstruction of Nuna: A working hypothesis. GeoCanada 2010 – Working with the Earth, p. 1–4.

61. Farnetani C.G., Hofmann A.W., 2011. Mantle plumes. In: H. Gupta (Ed.), Encyclopedia of solid Earth geophysics. Springer, Dordrecht, p. 857–869. https://doi.org/10.1007/978-90-481-8702-7_132.

62. Frost B.R., Frost C.D., Cornia M., Chamberlain K.R., Kirkwood R., 2006. The Teton – Wind River domain: a 2.68–2.67 Ga active margin in the western Wyoming Province. Canadian Journal of Earth Sciences 43 (10), 1489–1510. https:// doi.org/10.1139/E06-102.

63. Frost C.D., Fanning C.M., 2006. Archaean geochronological framework of the Bighorn Mountains, Wyoming. Canadian Journal of Earth Sciences 43 (10), 1399–1418. https://doi.org/10.1139/E06-051.

64. Frost C.D., Fruchey B.L., Chamberlain K.R., Frost B.R., 2006. Archaean crustal growth by lateral accretion of juvenile supracrustal belts in the south-central Wyoming Province. Canadian Journal of Earth Sciences 43 (10), 1533–1555. https://doi.org/10.1139/E06-092.

65. Gala M.G., Symons D.T.A., Palmer H.C., 1998. Geotectonics of the Hanson Lake Block, Trans-Hudson Orogen, Central Canada: A preliminary paleomagnetic report. Precambrian Research 90 (1–2), 85–101. https://doi.org/10.1016/S0301-9268(98)00034-5.

66. Galloway J.M., Armstrong D., Lavoie D., 2012. Palynology of the INCO-Winisk #49204 core (54°18’30”N, 87°02’30”W, NTS 43L/6), Ontario. Geological Survey of Canada, Open File 7065, 51 p. https://doi.org/10.4095/290985.

67. Glaznev V.N., Mints M.V., Muravina O.M., Raevsky A.B., Osipenko L.G., 2015. Complex geological–geophysical 3D model of the crust in the southeastern Fennoscandian Shield: Nature of density layering of the crust and crust–mantle boundary. Geodynamics & Tectonophysics 6 (2), 133–170. https://doi.org/10.5800/GT-2015-6-2-0176.

68. Goodwin A.M., 1985. Rooted Precambrian ring-shields: growth, alignment, and oscillation. American Journal of Science 285 (6), 481–531. https://doi.org/10.2475/ajs.285.6.481.

69. Gravity Anomaly Map of North America, 1987. Gravity Anomaly Map Committee under the auspices of The Geological Society of America and International Gravity Commission. Product Code: DNAGCSMS2, published: January 01, 1987. 5 sheets.

70. Guillou L., Jaupart C., 1995. On the effect of continents on mantle convection. Journal of Geophysical Research 100 (B12), 24217–24238. https://doi.org/10.1029/95JB02518.

71. Gurney J.J., Helmstaedt H.H., Richardson S.H., Shirey S.B., 2010. Diamonds through time. Economic Geology 105 (3), 689–712. https://doi.org/10.2113/gsecongeo.105.3.689.

72. Halls H.C., Heaman L.M., 2000. The paleomagnetic significance of new U–Pb age data from the Molson Dyke Swarm, Cauchon Lake Area, Manitoba. Canadian Journal of Earth Sciences 37 (6), 957–966. https://doi.org/10.1139/ e00-010.

73. Hammer P.T.C., Clowes R.M., Cook F.A., Van der Velden A.J., Vasudevan K., 2010. The Lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent. Canadian Journal of Earth Sciences 47 (5), 821–857. https://doi.org/10.1139/E10-036.

74. Hand E., 2015. Mantle plumes seen rising from Earth's core. Science 349 (6252), 1032–1033. https://doi.org/ 10.1126/science.349.6252.1032.

75. Hanmer S., Sandeman H.A., Davis W.J., Aspler L.B., Rainbird R.H., Ryan J.J., Relf C., Peterson T.D., 2004. Geology and Neoarchaean tectonic setting of the Central Hearne supracrustal belt, Western Churchill Province, Nunavut, Canada. Precambrian Research 134 (1–2), 63–83. https://doi.org/10.1016/j.precamres.2004.04.005.

76. Hanna W.F., Sweeney R.E., Hildenbrand T.G., Tanner J.G., McConnel R.K., Godson R.H., 1989. The gravity anomaly map of North America. Chapter 2. In: A.W. Bally, A.R. Palmer (Eds.), The geology of North America. Geological Society of America, vol. A, p. 17–28.

77. Hartlaub R.P., Heaman L.M., Ashton K.E., Chacko T., 2004. The Archaean Murmac Bay Group: evidence for a giant Archaean rift in the Rae Province, Canada. Precambrian Research 131 (3–4), 345–372. https://doi.org/10.1016/j.precamres.2004.01.001.

78. Hawkesworth C.J., Kemp A.I.S., 2006. Evolution of the continental crust. Nature 443 (7113), 811–817. https://doi.org/10.1038/nature05191.

79. Heaman L.M., Böhm Ch.O., Machado N., Krogh T.E., Weber W., Corkery M.T., 2011. The Pikwitonei Granulite Domain, Manitoba: a giant Neoarchean high-grade terrane in the northwest Superior Province. Canadian Journal of Earth Sciences 48 (2), 205–245. https://doi.org/10.1139/E10-058.

80. Hill R.I., Campbell I.H., Davies G.F., Griffits R.W., 1992. Mantle plumes and continental tectonics. Science 256 (5054), 186–193. https://doi.org/10.1126/science.256.5054.186.

81. Hoffman P.F., 1988. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543–603. https://doi.org/10.1146/annurev.ea.16. 050188.002551.

82. Hoffman P.F., 1989. Precambrian geology and tectonic history of North America: An overview. In: A.W. Bally, A.R. Palmer (Eds.), The geology of North America. Geological Society of America, vol. A, p. 447–512. https://doi.org/10.1130/DNAG-GNA-A.1.

83. Ispolatov V., Lafrance B., Dubé B., Creaser R., Hamilton M., 2008. Geologic and structural setting of gold mineralization in the Kirkland Lake – Larder Lake Gold Belt, Ontario. Economic Geology 103, 1309–1340. https://doi.org/10.2113/gsecongeo.103.6.1309.

84. Jackson S.L., Fyon J.A., Corfu F., 1994. Review of Archean supracrustal assemblages of the southern Abitibi greenstone belt in Ontario, Canada: products of microplate interaction within a large-scale plate-tectonic. Precambrian Research 65 (1–4), 183–205. https://doi.org/10.1016/0301-9268(94)90105-8.

85. Keane S.D., Hall C.M., Essene E.J., Cosca M.A., DeWolf C.P., Halliday A.N., 2006. Isotopic constraints on the thermal history of the Wind River Range, Wyoming: implications for Archaean metamorphism. Canadian Journal of Earth Sciences 43 (10), 1511–1532. https://doi.org/10.1139/E06-090.

86. Ketchum J.W.F., Ayer J.A., Van Breemen O., Pearson N.J., Becker J.K., 2008. Pericontinental crustal growth of the Southwestern Abitibi Subprovince, Canada – U-Pb, Hf, and Nd isotope evidence. Economic Geology 103 (6), 1151–1184. https://doi.org/10.2113/gsecongeo.103.6.1151.

87. Ketchum J.W.F., Bleeker W., Stern R.A., 2004. Evolution of an Archaean basement complex and its autochthonous cover, southern Slave Province, Canada. Precambrian Research 135 (3), 149–176. https://doi.org/10.1016/j.precamres. 2004.08.005.

88. Kirdyashkin A.A., Dobretsov N.L., Kirdyashkin A.G., 2004. Thermochemical plumes. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (9), 1005–1024.

89. Kjarsgaard B.A., Levinson A.A., 2002. Diamonds in Canada. Gems & Gemology 38 (3), 208–238.

90. Klasner J.S., Cannon W.F., Schulz K.J., 1981. A large-scale positive-gravity anomaly in northeastern North America: Possible evidence for large-scale meteorite impact. In: Lunar and Planetary Institute and National Academy of Sciences Conference on Large Body Impacts and Terrestrial Evolution: Geological, Climatological, and Biological Implications. Abstracts, p. 24.

91. Klasner J.S., Schulz K.J., 1982. Concentrically zoned pattern in the Bouguer gravity anomaly map of northeastern North America. Geology 10 (10), 537–541. https://doi.org/10.1130/0091-7613(1982)102.0.CO;2.

92. Kopylova M.G., Afanasiev V.P., Bruce L.F., Thurston P.C., Ryder J., 2011. Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth and Planetary Science Letters 312 (1–2), 213–225. https://doi.org/10.1016/j.epsl.2011.09.057.

93. Kotelkin V.D., Lobkovsky L.I., 2007. The Myasnikov global theory of the evolution of planets and the modern thermochemical model of the Earth's evolution. Izvestiya, Physics of the Solid Earth 43(1), 24–41. https://doi.org/10.1134/S1069351307010041.

94. Krogh T.E., 1993. High precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing structural zone, Ontario: implications for structure and development of the lower crust. Earth and Planetary Science Letters 119 (1–2), 1–18. https://doi.org/10.1016/0012-821X(93)90002-Q.

95. Kukkonen I.T., Lahtinen R. (Eds.), 2006. Finnish Reflection Experiment FIRE 2001–2005. Geological Survey of Finland Special Paper 43, 247 p.

96. Kusky T.M., Santosh M., 2009. The Columbia connection in North China. In: S. Reddy, M. Mazumder, D.A.D. Evans, A.S. Collins (Eds.), Palaeoproterozoic supercontinents and global evolution. Geological Society, London, Special Publications, vol. 323, p. 49–71. https://doi.org/10.1144/SP323.3.

97. Laurent O., Martin H., Doucelance R., Moyen J.-F., Paquette J.-L., 2011. Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary. Lithos 123 (1–4), 73–91. http://dx.doi.org/10.1016/j.lithos.2010.12.009.

98. Lavoie D., Pinet N., Dietrich J., Chen Z., 2015. The Paleozoic Hudson Bay Basin in northern Canada: New insights into hydrocarbon potential of a frontier intracratonic basin. AAPG Bulletin 99 (5), 859–888. https://doi.org/10.1306/12161414060.

99. LeCheminant A.N., Roddick J.C., 1991. U-Pb zircon evidence for widespread 2.6 Ga felsic magmatism in the central District of Keewatin, N.W.T. In: Radiogenic Age and Isotopic Studies: Report 4. Geological Survey of Canada Paper, No. 90-2, p. 91–99.

100. Leclair A., Percival J.A., Green A.G., Wu J., West G.F., Wang W., 1994. Seismic reflection profiles across the central Kapuskasing uplift. Canadian Journal of Earth Sciences 31 (7), 1016–1026. https://doi.org/10.1139/e94-092.

101. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160 (1–2), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.

102. Lodge R.W.D., Gibson H.L., Stott G.M., Hudak G.J., Jirsa M.A., Hamilton M.A., 2013. New U–Pb geochronology from Timiskaming-type assemblages in the Shebandowan and Vermilion greenstone belts, Wawa subprovince, Superior Craton: Implications for the Neoarchaean development of the southwestern Superior Province. Precambrian Research 235, 264–277. https://doi.org/10.1016/j.precamres.2013.06.011.

103. Ludden J., Hynes A., 2000. The LITHOPROBE Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. Canadian Journal of Earth Sciences 37 (2–3), 459–476. https://doi.org/10.1139/e99-120.

104. Mäder U.K., Percival J.A., Berman R.G., 1994. Thermobarometry of garnet-clinopyroxene-hornblende granulites from the Kapuskasing structural zone. Canadian Journal of Earth Sciences 31 (7), 1134–1145. https://doi.org/10.1139/e94-101.

105. Magnetic Anomaly Map of North America, 2002. Scale 1:10000000. North American Magnetic Anomaly Group (NAMAG): V. Bankey, A. Cuevas, D. Daniels, C.A. Finn, I. Hernandez, P. Hill, R. Kucks, W. Miles, M. Pilkington, C. Roberts, W. Roest, V. Rystrom, S. Shearer, S. Snyder, R. Sweeney, J. Velez. Edited by F.C. Brunstein. U.S. Department of the Interior, U.S. Geological Survey. Maruyama S., 1994. Plume tectonics. Journal of the Geological Society of Japan 100 (1), 24–49. http://doi.org/10.5575/geosoc.100.24.

106. Maruyama S., Yuen D.A., Karato S.-I., Windley B.F., 2007. Dynamics of plumes and superplumes through time. Chapter 15. In: D.A. Yuen, S. Maruyama, S. Karato, B.F. Windley (Eds.), Superplumes: Beyond Plate Tectonics. Springer, New York, p. 441–502. http://dx.doi.org/10.1007/978-1-4020-5750-2_15.

107. Maurice C., David J., Bédard J.H., Francis D., 2009. Evidence for a widespread mafic cover sequence and its implications for continental growth in the Northeastern Superior Province. Precambrian Research 168 (1–2), 45–65. https://doi.org/10.1016/j.precamres.2008.04.010.

108. Melezhik V.A., Prave A.R., Fallick A.E., Lepland A., Kump L.R., Strauss H. (Eds.), 2012. Reading the Archive of Earth’s Oxygenation. Volume 1. The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project. Springer, Berlin, Heidelberg, 490 p.

109. Mereu R.F., Baerg J., Wu J., 1989. The complexity of the continental lower crust and Moho from PmP data: results from COCRUST experiments. In: R.F. Mereu, S. Mueller, D.M. Fountain (Eds.), Properties and processes of Earth's lower crust. AGU Geophysical Monograph Series, vol. 51, p. 103–119. https://doi.org/10.1029/GM051p0103.

110. Mezger K., Bohlen S.R., Hanson G.N., 1990. Metamorphic history of the Archean Pikwitonei Granulite Domain and Cross Lake Subprovince, Superior Province, Manitoba, Canada. Journal of Petrology 31 (2), 483–517. https://doi.org/10.1093/petrology/31.2.483.

111. Mints M.V., 1998. The correlation between the Palaeoproterozoic orogens and granulite belts in the Baltic Shield and North America craton: A suggested model of Palaeoproterozoic plate tectonics. Gondwana Research 1 (2), 235–246. https://doi.org/10.1016/S1342-937X(05)70834-0.

112. Mints M.V., 2011. 3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications. Geotectonics 45 (4), 267–290. https://doi.org/10.1134/S0016852111040054.

113. Mints M.V., 2014. Tectonics and geodynamics of granulite-gneiss complexes in the East European craton. Geotectonics 48 (6), 496–522. https://doi.org/10.1134/S0016852114060089.

114. Mints M.V., 2016. Seismic images of the crust-mantle boundary as an expression of geodynamics of the Precambrian crust formation. Geofizicheskie Issledovaniya (Geophysical Research) 17 (1), 65–82 (in Russian) [Минц М.В. Сейсмические образы коро-мантийной границы как отражение геодинамики докембрийского корообразования // Геофизические исследования. 2016. Т. 17. № 1. С. 65–82].

115. Mints M.V., 2017a. Meso-Neoproterozoic Grenville-Sveconorwegian intracontinental orogen: history, tectonics, geodynamics. Geodynamics & Tectonophysics 8 (3), 619–642 (in Russian) [Минц М.В. Мезонеопротерозойский Гренвилл-Свеконорвежский внутриконтинентальный ороген: история, тектоника, геодинамика // Геодинамика и тектонофизика. 2017. Т. 8. № 3. С. 619–642]. https://doi.org/10.5800/GT-2017-8-3-0309.

116. Mints M.V., 2017b. The composite North American craton, Superior Province: deep crustal structure and mantle-plume model of Neoarchaean evolution. Precambrian Research 302, 94–121. https://doi.org/10.1016/ j.precamres.2017.08.025.

117. Mints M.V., Eriksson P.G., 2016. Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time. Geodynamics & Tectonophysics 7 (2), 173–232. https://doi.org/10.5800/GT2016-7-2-0203.

118. Mints M.V., Suleimanov A.K., Babayants P.S., Belousova E.A., Blokh Yu.I., Bogina M.M., Bush W.A., Dokukina K.A., Zamozhniaya N.G., Zlobin V.L., Kaulina T.V., Konilov A.N., Mikhailov V.O., Natapov L.M., Piip V.B., Stupak V.M., Tikhotsky S.A., Trusov A.A., Philippova I.B., Shur D.Yu., 2010. Deep Structure, Evolution and Mineral Deposits of the Early Precambrian Basement of the East European Platform: An Interpretation of the Data from 1-EU Geotraverse, the 4B and Tatseis Profiles. GEOKART, GEOS, Moscow, vol. 1, 408 p.; vol. 2, 400 p. (in Russian) [Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Заможняя Н.Г., Злобин В.Л., Каулина Т.В., Конилов А.Н., Михайлов В.О., Натапов Л.М., Пийп В.Б., Ступак В.М., Тихоцкий С.А., Трусов А.А., Филиппова И.Б., Шур Д.Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и Татсейс. М.: ГЕОКАРТ; ГЕОС, 2010. Т. 1, 408 с., Т. 2, 400 с.].

119. Mints M.V., Suleimanov A.K., Zamozhniaya N.G., Stupak V.M., 2015. Study of the basement of the Russian European Platform based on a system of geotraverses and CMP profiles: 3D models of the Early Precambrian crust in key regions. Chapter 12. In: East European craton: Early Precambrian history and 3D models of deep crustal structure. Geological Society of America Special Paper, vol. 510, p. 265–300. https://dx.doi.org/10.1130/2015.2510(12).

120. Mooney W.D., Meissner R., 1992. Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. In: D.M. Fountain, R. Arculus, R.W. Kay (Eds.), Continental lower crust. Elsevier, Amsterdam, p. 45–79.

121. Nataf H.-C., 2000. Seismic imaging of mantle plumes. Annual Review of Earth and Planetary Sciences 28, 391–417. https://doi.org/10.1146/annurev.earth.28.1.391.

122. Natural Resources Canada, 2018. Abitibi-Grenville Seismic Reflection Line 15, http://open.canada.ca/data/en/ dataset/0d9d28ab-16b9-5f7e-8cbe-1ed4c6f19086; Abitibi-Grenville Seismic Reflection Line 16, http://open. canada.ca/data/en/dataset/392fb3d9-ed15-4e3b-bcba-b0aca36103ef; Abitibi-Grenville Seismic Reflection Line 16a, http://open.canada.ca/data/en/dataset/f6bb323a-4f51-5dee-b7bb-8cc796a85efe; Kapuskasing Structural Zone Seismic Reflection Line 12, http://open.canada.ca/data/en/dataset/536c7291-9c63-5317-a373-767ae2c09 143; Abitibi-Grenville Seismic Reflection Line 25, http://open.canada.ca/data/en/dataset/c68576d2-b806-51eeac97-9b786e4b7955; Kapuskasing Structural Zone Seismic Reflection Lines 2-3-4, http://geogratis.gc.ca/api/en/ nrcan-rncan/ess-sst/35569ccb-a7a2-51f4-89ff-4acef84def8f.html.

123. Oberthür T., Davis D.W., Blenkinsop T.G., Höhndorf A., 2002. Precise U–Pb mineral ages, Rb–Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe – constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research 113 (3–4), 293–305. https://doi.org/10.1016/S0301-9268(01)00215-7.

124. O'Reilly S.Y., Griffin W.L., 2013. Moho vs crust–mantle boundary: Evolution of an idea. Tectonophysics 609, 535–546. https://doi.org/10.1016/j.tecto.2012.12.031.

125. Parks J.E., 2011. Meso- and Neoarchaean tectonic evolution of the northwestern Superior Province: Insights from a U-Pb geochronology, Nd isotope, and geochemistry study of the Island Lake greenstone belt, Northeastern Manitoba. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Earth Sciences. Waterloo, Ontario, Canada, 178 p.

126. Pehrsson S.J., Berman R.G., Eglington B., Rainbird R., 2013. Two Neoarchaean supercontinents revisited: The case for a Rae family of cratons. Precambrian Research 232, 27–43. https://doi.org/10.1016/j.precamres.2013.02.005.

127. Percival J.A., 1989. A regional perspective of the Quetico metasedimentary belt, Superior Province, Canada. Canadian Journal of Earth Sciences 26 (4), 677–693. https://doi.org/10.1139/e89-058.

128. Percival J.A., 1994. Archean high-grade metamorphism. Chapter 9. In: K.C. Condie (Ed.), Archean crustal evolution. Developments in Precambrian geology, vol. 11. Elsevier, Amsterdam, p. 357–410. https://doi.org/10.1016/S0166-2635(08)70227-5.

129. Percival J.A., Mortensen J.K., Stern R.A., Card K.D., Bégin N.J., 1992. Giant granulite terranes of northeastern Superior Province: the Ashuanipi complex and Minto block. Canadian Journal of Earth Sciences 29 (10), 2287–2308. https://doi.org/10.1139/e92-179.

130. Percival J.A., Sanborn-Barrie M., Skulski T., Stott G.M., Helmstaedt H., White D.J., 2006. Tectonic evolution of the western Superior Province from NATMAP and LITHOPROBE studies. Canadian Journal of Earth Sciences 43 (7), 1085–1117. https://doi.org/10.1139/e06-062.

131. Percival J.A., Skulski T., 2000. Tectonothermal evolution of the northern Minto Block, Superior Province, Québec, Canada. The Canadian Mineralogist 38 (2), 345–378. https://doi.org/10.2113/gscanmin.38.2.345.

132. Percival J.A., Skulski T., Sanborn-Barrie M., Stott G.M., Leclair A.D., Corkery M.T., Boily M., 2012. Geology and tectonic evolution of the Superior Province, Canada. Chapter 6. In: J.A. Percival, F.A. Cook, R.M. Clowes (Eds.), Tectonic styles in Canada: the LITHOPROBE perspective. Geological Association of Canada Special Paper, vol. 49, p. 321–378.

133. Percival J.A., Stern R.A., Mortensen J.K., Card K.D., Bégin N.J., 1994. Minto block Superior Province: missing link in deciphering tectonic assembly of the craton at 2.7 Ga. Geology 22 (9), 839–842. https://doi.org/10.1130/0091-7613(1994)022%3C0839:MBSPML%3E2.3.CO;2.

134. Percival J.A., Stern R.A., Skulski T., 2001. Crustal growth through successive arc magmatism: Reconnaissance U-Pb SHRIMP data from the northeastern Superior Province, Canada. Precambrian Research 109 (3–4), 203–238. https://doi.org/10.1016/S0301-9268(01)00148-6.

135. Percival J.A., West G.F., 1994. The Kapuskasing uplift: a geological and geophysical synthesis. Canadian Journal of Earth Sciences 31 (7), 1256–1286. https://doi.org/10.1139/e94-110.

136. Pisarevsky S.A., Elming S.-A., Pesonen L.J., Li Z.-X., 2014. Mesoproterozoic paleogeography: supercontinent and beyond. Precambrian Research 244, 207–225. https://doi.org/10.1016/j.precamres.2013.05.014.

137. Porritt R.W., Miller M.S., Darbyshire F.A., 2015. Lithospheric architecture beneath Hudson Bay. Geochemistry, Geophysics, Geosystems 16 (7), 2262–2275. https://doi.org/10.1002/2015GC005845. Prodehl C., Kennett B., Artemieva I., Thybo H., 2013. 100 years of seismic research on the Moho. Tectonophysics 609, 9–44. https://doi.org/10.1016/j.tecto.2013.05.036.

138. Rayner N.M., Stern R.A., Bickford M.E., 2005. Tectonic implications of new SHRIMP and TIMS U–Pb geochronology of rocks from the Sask Craton, Peter Lake Domain, and Hearne margin, Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences 42 (4), 635–657. https://doi.org/10.1139/e04-045.

139. Reimink J.R., Chacko T., Stern R.A., Heaman L.M., 2016. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Research 281, 453–472. https://doi.org/10.1016/j.precamres.2016.06.007.

140. Ritsema J., Deuss A., van Heijst H., Woodhouse J., 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International 184 (3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x.

141. Roger J., Duchesne M.J., Lajeunesse P., St-Onge G., Pinet N., 2011. Imaging Pockmarks and Ring-Like Features in Hudson Bay from Multibeam Bathymetry Data. Geological Survey of Canada Open File 6760, 19 p.

142. Rogers J.J.W., Santosh M., 2004. Continents and Supercontinents. Oxford University Press, New York, 289 p.

143. Sims P.K., Finn C.A., Rystrom V.L., 2001. Preliminary Precambrian Basement Map Showing Geologic – Geophysical Domains, Wyoming. U.S. Geological Survey, Open-File Report 2001–199, 9 p. and 2 plates.

144. Sircombe K.N., Bleeker W., Stern R.A., 2001. Detrital zircon geochronology and grain-size analysis of ~2800 Ma Mesoarchaean proto-cratonic cover succession, Slave Province, Canada. Earth and Planetary Science Letters 189 (3–4), 207–220. https://doi.org/10.1016/S0012-821X(01)00363-6.

145. Snelson C.M., Henstock T.J., Keller G.R., Miller K.C., Levander A., 1998. Crustal and uppermost mantle structure along the Deep Probe seismic profile. Rocky Mountain Geology 33 (2), 181–198. https://doi.org/10.2113/33.2.181.

146. Snyder D.B., Bleeker W., Reed L.E., Ayer J.A., Houlé M.G., Bateman R., 2008. Tectonic and metallogenic implications of regional seismic profiles in the Timmins Mining Camp. Economic Geology 103 (6), 1135–1150. https://doi.org/10.2113/gsecongeo.103.6.1135.

147. Stern R.A., Bleeker W., 1998. Age of the world's oldest rocks refined using Canada's SHRIMP: the Acasta gneiss complex, Northwest territories, Canada. Geoscience Canada 25 (1), 27–31.

148. Stern R.A., Hanson G.N., Shirey S.B., 1989. Petrogenesis of mantle-derived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior province. Canadian Journal of Earth Sciences 26 (9), 1688–1712. https://doi.org/10.1139/e89-145.

149. Stevenson R., Henry P., Gariépy C., 1999. Assimilation–fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada. Precambrian Research 96 (1–2), 83–99. https://doi.org/10.1016/S0301-9268(99)00009-1.

150. Stone D., Semenyna L., 2004. Petrography, Chemistry and Diamond Characteristics of Heterolithic Breccia and Lamprophyre Dikes at Wawa, Ontario. Ontario Geological Survey Open File Report 6134, 39 p.

151. Stott G.M., Corkery M.T., Percival J.A., Simard M., Goutier J., 2010. A revised terrane subdivision of the Superior Province. In: Summary of field work and other activities 2010. Ontario Geological Survey Open File Report 6260, p. 20-1–20-10.

152. Symons D.T.A., Harris M.J., 2000. The ~1830 Ma Trans-Hudson hairpin from paleomagnetism of the Wapisu gneiss dome, Kisseynew Domain, Manitoba. Canadian Journal Earth Sciences 37 (6), 913–922. https://doi.org/10.1139/e99-043.

153. Thomas M.D., 1984. Comment on “Concentrically zoned pattern in the Bouguer gravity anomaly map of northeastern North America”. Geology 12 (1), 57–58. https://doi.org/10.1130/0091-7613(1984)12%3C57:CAROCZ%3E2.0.CO;2.

154. Thomas M.D., Sharpton V.L., Grieve R.A.J., 1987. Gravity patterns and Precambrian structure in the North Central Plains. Geology 15 (6), 489–492. https://doi.org/10.1130/0091-7613(1987)152.0.CO;2.

155. Thurner S., Margolis R., Levander A., Niu F., 2015. PdS receiver function evidence for crustal scale thrusting, relic subduction, and mafic underplating in the Trans-Hudson Orogen and Yavapai province. Earth and Planetary Science Letters 426, 13–22. https://doi.org/10.1016/j.epsl.2015.06.007.

156. Thurston P.C., 2015. Igneous rock associations 19. Greenstone belts and granite–greenstone terranes: constraints on the nature of the Archaean world. Geoscience Canada 42 (4), 437–484. https://doi.org/10.12789/geocanj.2015.42.081.

157. Thurston P.C., Osmani I.A., Stone D., 1991. Northwestern Superior Province: Review and terrane analysis. In: P.C. Thurston, H.R. Williams, R.H. Sutcliffe, G.M. Stott (Eds.), Geology of Ontario. Ontario Geological Survey Special Volume 4, Part 1, p. 81–144.

158. Trubitsyn V.P., Trubitsyn А.P., 2005. Evolution of mantle plumes and uplift of continents during the Pangea breakup. Russian Journal of Earth Sciences 7 (3), ES3001. https://doi.org/10.2205/2005ES000179.

159. Van Reenen D.D., Roering C., Ashwal L.D., De Wit M.J., 1992. Regional geological setting of the Limpopo Belt. Precambrian Research 55 (1–4), 1–5. https://doi.org/10.1016/0301-9268(92)90009-D.

160. White D.J., Musacchio G., Helmstaedt H.H., Harrap R.M., Thurston P.C., van der Velden A., Hall K., 2003. Images of a lowercrustal oceanic slab: direct evidence for tectonic accretion in the Archaean western Superior province. Geology 31 (11), 997–1000. https://doi.org/10.1130/G20014.1.

161. Wodicka N., Corrigan D., Nadeau L., Erdmann S., 2011. New U-Pb geochronological results from Melville Peninsula: unravelling the Archaean and Early Paleoproterozoic magmatic history of the North-Central Rae Craton. In: Ottawa 2011 Geological Association of Canada – Mineralogical Association of Canada – Society of Economic Geologists – Society for Geology Applied to Mineral Deposits Joint Annual Meeting. Ottawa, Ontario, Abstract Volume 34, p. 236.

162. Wyman D.A., Kerrich R., Polat A., 2002. Assembly of Archaean cratonic mantle lithosphere and crust: plume – arc interaction in the Abitibi – Wawa subduction – accretion complex. Precambrian Research 115 (1–4), 37–62. https:// doi.org/10.1016/S0301-9268(02)00005-0.


Для цитирования:


Минц М.В., Афонина Т.Б. ГЛУБИННОЕ СТРОЕНИЕ И МОДЕЛЬ НЕОАРХЕЙСКОЙ ЭВОЛЮЦИИ СЕВЕРО‐АМЕРИКАНСКОГО КРАТОНА. Геодинамика и тектонофизика. 2018;9(2):309-363. https://doi.org/10.5800/GT-2018-9-2-0350

For citation:


Mints M.V., Afonina T.B. DEEP CRUSTAL STRUCTURE AND MODEL OF NEORCHAEAN EVOLUTION OF THE NORTH AMERICAN CRATON. Geodynamics & Tectonophysics. 2018;9(2):309-363. (In Russ.) https://doi.org/10.5800/GT-2018-9-2-0350

Просмотров: 143


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)