Preview

Geodynamics & Tectonophysics

Advanced search

VARIATIONS IN ELECTROPHYSICAL PARAMETERS ESTIMATED FROM ELECTROMAGNETIC MONITORING DATA AS AN INDICATOR OF FAULT ACTIVITY

https://doi.org/10.5800/GT-2018-9-1-0339

Abstract

In the regions of high seismic activity, investigations of fault zones are of paramount importance as such zones can generate seismicity. A top task in the regional studies is determining the rates of activity from the data obtained by geoelectrical methods, especially considering the data on the faults covered by sediments. From a practical standpoint, the results of these studies are important for seismic zoning and forecasting of natural and anthropogenic geodynamic phenomena that may potentially occur in the populated areas and zones allocated for construction of industrial and civil objects, pipelines, roads, bridges, etc. Seismic activity in Gorny Altai is regularly monitored after the destructive 2003 Chuya earthquake (M=7.3) by the non-stationary electromagnetic sounding with galvanic and inductive sources of three modifications. From the long-term measurements that started in 2007 and continue in the present, electrical resistivity and electrical anisotropy are determined. Our study aimed to estimate the variations of these electrophysical parameters in the zone influenced by the fault, consider the intensity of the variations in comparison with seismicity indicators, and attempt at determining the degree of activity of the faults. Based on the results of our research, we propose a technique for measuring and interpreting the data sets obtained by a complex of non-stationary sounding modifications. The technique ensures a more precise evaluation of the electrophysical parameters. It is concluded that the electric anisotropy coefficient can be effectively used to characterize the current seismicity, and its maximum variations, being observed in the zone influenced by the fault, are characteristic of the fault activity. The use of two electrophysical parameters enhances the informativeness of the study.

About the Authors

A. E. Shalaginov
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS.
Russian Federation

Aleksander E. Shalaginov, Candidate of Geology and Mineralogy, Researcher. 

Novosibirsk.



N. N. Nevedrova
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS.
Russian Federation

Nina N. Nevedrova, Doctor of Geology and Mineralogy, Lead Researcher.

Novosibirsk.


I. O. Shaparenko
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS.
Russian Federation

Ilia O. Shaparenko, Engineer.

Novosibirsk.



References

1. Barsukov P.O., Fainberg E.B., 2016. Marine transient electromagnetic sounding of deep buried hydrocarbon reservoirs: principles, methodologies and limitations. Geophysical Prospecting 65 (3), 840–858. https://doi.org/10.1111/1365-2478.12416.

2. Bataleva E.A., Batalev V.Y., Rybin A.K., 2015. Interrelation of conductivity, seismic velocities and the seismicity for Central Tien Shan lithosphere. Litosfera (Lithosphere) (5), 81–89 (in Russian) [Баталева Е.А., Баталев В.Ю., Рыбин А.К. Взаимосвязь аномалий электропроводности, скоростных характеристик и режима сейсмичности литосферы Центрального Тянь-Шаня // Литосфера. 2015. № 5. С. 81–89].

3. Bragin V.D., Mukhamadeeva V.A., 2009. The study of the variations in the anisotropy of electrical resistance in the crust in the Bishkek geodynamic polygon by electromagnetic methods. In: Geodynamics of intra-continental orogens and geoecological problems. Proceedings of the IV International Symposium. Bishkek–Moscow, p. 74–84 (in Russian) [Брагин В.Д., Мухамадеева В.А. Изучение вариаций анизотропии электрического сопротивления в земной коре на территории Бишкекского геодинамического полигона электромагнитными методами // Геодинамика внутриконтинентальных орогенов и геоэкологические проблемы: Материалы IV Международного симпозиума. Бишкек–Москва, 2009. C. 74–84].

4. Deev E.V., Turova I.V., Borodovskiy A.P., Zolnikov I.D., Oleszczak L., 2017. Unknown large ancient earthquakes along the Kurai fault zone (Gorny Altai): new results of palaeoseismological and archaeoseismological studies. International Geology Review 59 (3), 293–310. https://doi.org/10.1080/00206814.2016.1258675.

5. Devyatkin E.V., 1981. Cenozoic of Inner Asia (Stratigraphy, Geochronology, Correlation). Nauka, Moscow, 196 p. (in Russian) [Девяткин Е.В. Кайнозой Внутренней Азии (стратиграфия, геохронология, корреляция). М.: Наука, 1981. 196 с.].

6. Emanov A.A., Leskova E.V., Emanov A.F., Fateev A.V., Kolesnikov Yu.I., 2015. The epicentral zone of the September 27, 2003 Chuya earthquake, M=7.3. Observations in 2012–2013. In: Earthquakes of Russia in 2013. GS RAS, Obninsk, p. 99–102 (in Russian) [Еманов А.А., Лескова Е.В., Еманов А.Ф., Фатеев А.В., Колесников Ю.И. Эпицентральная область Чуйского землетрясения 27.09.2003 г. с М=7.3. Наблюдения 2012–2013 гг. // Землетрясения России в 2013 году. Обнинск: ГС РАН, 2015. С. 99–102].

7. Emanov A.F., Emanov A.A., Leskova E.V., Podkorytova V.G., Durachenko A.A., Korabelshchikov D.G., Churashev S.A., Goncharov V.N., Fateev A.V., 2016. Altai and Sayan. In: Earthquakes of Russia in 2014. GS RAS, Obninsk, p. 30–37 (in Russian) [Еманов А.Ф., Еманов А.А., Лескова Е.В., Подкорытова В.Г., Дураченко А.А., Корабельщиков Д.Г., Чурашев С.А., Гончаров В.Н., Фатеев А.В. Алтай и Саяны // Землетрясения России в 2014 году. Обнинск: ГС РАН, 2016. С. 30–37].

8. Epov M.I., Nevedrova N.N., Antonov E.Yu., 2006. The method for considering the characteristic distortions in the field transient electromagnetic sounding curves obtained in seismically active regions. Geofizicheskii Vestnik (Geophysical Bulletin) (6), 8–14 (in Russian) [Эпов М.И., Неведрова Н.Н., Антонов Е.Ю. Способ учета характерных искажений полевых кривых становлением электромагнитного поля, полученных в сейсмоактивных районах // Геофизический вестник. 2006. № 6. C. 8–14].

9. Furman A., Ferrґe T.P.A., Heath G.L., 2007. Spatial focusing of electrical resistivity surveys considering geologic and hydrologic layering. Geophysics 72 (2), F65–F73. https://doi.org/10.1190/1.2433737.

10. Gélis C., Noble M., Cabrera J., Penz S., Chauris H., Cushing E.M., 2016. Ability of high-resolution resistivity tomography to detect fault and fracture zones: application to the Tournemire experimental platform, France. Pure and Applied Geophysics 173 (2), 573–589. https://doi.org/10.1007/s00024-015-1110-1.

11. Goldman M., Mogilatov V., Haroon A., Levi E., Tezkan B., 2015. Signal detectability of marine electromagnetic methods in the exploration of resistive targets. Geophysical Prospecting 63 (1), 192–210. https://doi.org/10.1111/1365-2478.12151.

12. Gubatenko V.P., Ogadzhanov V.A., Nazarov A.A., 2000. Monitoring the rock decompaction dynamics by electrical prospecting methods. Izvestiya, Physics of the Solid Earth 36 (9), 799–805.

13. Hennig T., Weller A., Moller M., 2008. Object orientated focussing of geoelectrical multielectrode measurements. Journal of Applied Geophysics 65 (2), 57–64. https://doi.org/10.1016/j.jappgeo.2008.04.007.

14. Khabinov O.G., Chalov I.A., Vlasov A.A., Antonov E.Yu., 2009. The system for interpretation of EMS transient electromagnetic sounding data. In: GEO–Siberia–2009: The V International Scientific Congress. Siberian State University of Geosystems and Technologies, Novosibirsk, p. 108–113 (in Russian) [Хабинов О.Г., Чалов И.А., Власов А.А., Антонов Е.Ю. Система интерпретации данных зондирований методом переходных процессов EMS // ГЕО-Сибирь–2009: V Международный научный конгресс. Новосибирск: Сибирский государственный университет геосистем и технологий, 2009. С. 108–113].

15. Loke M.H., 2015. Geotomo Software Pty Ltd. Available from: http://www.geotomosoft.com.

16. Lunina O.V., Gladkov A.S., 2015. Seismically induced clastic dikes as a potential approach for the estimation of the lower-bound magnitude/intensity of paleoearthquakes. Engineering Geology 195, 206–213. https://doi.org/10.1016/j.enggeo.2015.06.008.

17. Mogilatov V.S., Zlobinskiy A.V., 2017. Universal software for electrical prospecting by transient. Geofizika (Geophysics) (1), 45–55 (in Russian) [Могилатов В.С., Злобинский А.В. Универсальное математическое обеспечение зондирований становлением // Геофизика. 2017. № 1. С. 45–55].

18. Morelli G., LaBrecque D.J., 1996. Advances in ERT inverse modeling. European Journal of Environmental and Engineering Geophysics 1 (2), 171–186.

19. Nevedrova N.N., Dashevsky O.Yu., 2010. Software algorithmic means for interpreting galvanic and inductive electromagnetic sounding data in anisotropic media models. In: B.G. Mikhailenko, M.I. Epov (Eds.), Methods for solving direct and inverse problems of seismology, electromagnetism, and experimental studies in the problems of studying geodynamic processes in the crust of the Earth's upper mantle. Publishing House of SB RAS, Novosibirsk, p. 271–277 (in Russian) [Неведрова Н.Н., Дашевский О.Ю. Программно-алгоритмические средства интерпретации данных гальванических и индукционных электромагнитных зондирований в анизотропных моделях сред // Методы решения прямых и обратных задач сейсмологии, электромагнетизма и экспериментальные исследования в проблемах изучения геодинамических процессов в коре верхней мантии Земли / Ред. Б.Г. Михайленко, М.И. Эпов. Новосибирск: Изд-во СО РАН, 2010. С. 271–277].

20. Nevedrova N.N., Deev E.V., Ponomarev P.V., 2017. Fault structures and their geoelectric parameters in the epicentral zone of the 27 September 2003 Chuya earthquake (Gorny Altai) from resistivity data. Russian Geology and Geophysics 58 (1), 123–132. https://doi.org/10.1016/j.rgg.2016.01.021.

21. Nevedrova N.N., Epov M.I., 2012. Electromagnetic monitoring in seismically active regions of Siberia. Geofizicheskii Zhurnal (Geophysical Journal) 34 (4), 209–223 (in Russian) [Неведрова Н.Н., Эпов М.И. Электромагнитный мониторинг в сейсмоактивных районах Сибири // Геофизический журнал. 2012. Т. 34. № 4. С. 209–223].

22. Nevedrova N.N., Rokhina M.G., Shalaginov A.E., Sanchaa A.M., 2016. Analysis of long-term observations by method of non-stationary electromagnetic sounding (on the example of the seismoactive zone of Gorny Altai). Mining Informational and Analytical Bulletin (12), 190–212 (in Russian) [Неведрова Н.Н., Рохина М.Г., Шалагинов А.Е., Санчаа А.М. Анализ многолетних наблюдений методом нестационарного электромагнитного зондирования (на примере сейсмоактивной зоны Горного Алтая) // Горный информационно-аналитический бюллетень. 2016. № 12. С. 190–212].

23. Nevedrova N.N., Shalaginov A.E., 2015. Monitoring of electromagnetic parameters in the zone of seismic activation in Gorny Altai. Geofizika (Geophysics) (1), 31–40 (in Russian) [Неведрова Н.Н., Шалагинов А.Е. Мониторинг электромагнитных параметров в зоне сейсмической активизации Горного Алтая // Геофизика. 2015. № 1. С. 31–40].

24. Perrone A., Lapenna V., Piscitelli S., 2014. Electrical resistivity tomography technique for landslide investigation: a review. Earth-Science Reviews 135, 65–82. https://doi.org/10.1016/j.earscirev.2014.04.002.

25. Rogozhin E.A., Ovsyuchenko A.N., Marakhanov A.V., 2008. Major earthquakes of the Southern Gornyi Altai in the Holocene. Izvestiya, Physics of the Solid Earth 44 (6), 469–486. https://doi.org/10.1134/S1069351308060037.

26. Shalaginov A.E., 2017. Variations of Electrophysical Parameters from the Non-Stationary Electromagnetic Sounding Data in the Zone of Seismic Activation (Gorny Altai). PhD Thesis (Candidate of Geology and Mineralogy). Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 154 p. (in Russian) [Шалагинов А.Е. Вариации электрофизических параметров по данным нестационарного электромагнитного зондирования в зоне сейсмической активизации (на примере Горного Алтая): Дис. … канд. геол.-мин. наук. Новосибирск: ИНГГ СО РАН, 2017. 154 с.].

27. Sobolev G.A., 1993. Fundamentals of Earthquake Prediction. Nauka, Moscow, 312 p. (in Russian) [Соболев Г.А. Основы прогноза землетрясений. М.: Наука, 1993. 312 с.].

28. Stanica D., Stanica M., 2007. Electromagnetic monitoring in geodynamic active areas. Acta Geodynamica et Geomaterialia 4 (1), 99–107.

29. Strack K.M., 2010. Vozoff’s influence on LOTEM for hydrocarbon applications. In: ASEG Extended Abstracts 2010: 21st Geophysical Conference. Sydney, p. 1–4.

30. Zol’nikov I.D., 2010. The Role of Glaciations and Glacial Super Floods in the Geological Structure of Sedimentary Complexes in the Upper Half of the Neo-Pleistocene in Gorny Altai and the Prialtai Plain. Brief PhD Thesis (Doctor of Geology and Mineralogy). Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 32 p. (in Russian) [Зольников И.Д. Роль оледенений и гляциальных суперпаводков в геологическом строении осадочных комплексов верхней половины неоплейстоцена Горного Алтая и Приалтайской равнины: Автореф. дис. … докт. геол.-мин. наук. Новосибирск: ИНГГ СО РАН, 2010. 32 с.].


Review

For citations:


Shalaginov A.E., Nevedrova N.N., Shaparenko I.O. VARIATIONS IN ELECTROPHYSICAL PARAMETERS ESTIMATED FROM ELECTROMAGNETIC MONITORING DATA AS AN INDICATOR OF FAULT ACTIVITY. Geodynamics & Tectonophysics. 2018;9(1):93-107. (In Russ.) https://doi.org/10.5800/GT-2018-9-1-0339

Views: 1149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)