Preview

Geodynamics & Tectonophysics

Advanced search

SYN-RIFT SANDSTONЕS: THE FEATURES OF BULK CHEMICAL COMPOSITIONS, AND POSITIONS ON PALEOGEODYNAMIC DISCRIMINANT DIAGRAMS

https://doi.org/10.5800/GT-2018-9-1-0337

Abstract

From the early 1980s, the data on the bulk chemical composition of sandstones and mudstones are actively involved for interpretation of the paleogeodynamic settings for sedimentary sequences. Discriminant diagrams such as K2O/Na2O–SiO2/Al2O3 [Maynard et al., 1982], (Fe2O3*+MgO)–K2O/Na2O and others [Bhatia, 1983], SiO2–K2O/Na2O [Roser, Korsch, 1986], (K2O+Na2O)–SiO2/20–(TiO2+Fe2O3+MgO) [Kroonenberg, 1994] etc., are now widely used in regional investigations to classify terrigenous rocks from several paleogeodynamic settings (passive and active continental margins, oceanic and continental volcanic arcs etc.) with a certain ‘percentage of consistency’. The first diagrams DF1–DF2 for syn-rift compositions were published in the early 2010s [Verma, Armstrong-Altrin, 2013]. This article analyzes the bulk chemical compositions of syn-rift sandstones from intracratonic rifts and rifts formed during the break-up of the Columbia and Gondwana supercontinents, rifts within volcanic arcs and related to the collapse of collision orogens (for example, Permian sandstones of the Malužiná formation, Western Carpathians, Slovakia). Our database includes the Neoproterozoic Uinta Mountain Group (USA), the Cretaceous Omdurman formation of the Khartoum Basin (Sudan), the siliciclastic deposits of the Kalahari Basin (East African rift zone), the sandstones of the Vindhyan Supergroup (India), the Neoproterozoic Ui Group of the Uchur-Maya region (Southeast Siberia), the Meso-Neoproterozoic Banxi Group (Southern China), the Mesoproterozoic Belt-Purcell Supergroup (USA), the Oronto and Bayfield Groups of the Midcontinent (USA), as well as the sandstones of the Upper Precambrian Ai and Mashak formations, and the metasedimentary rocks of the Arsha Group (Southern Urals). The article examines: (1) the position of the syn-rift sandstone compositions (fields) on the log(SiO2/Al2O3)–log(Na2O/K2O) classification diagram and the F1–F2 diagram, which gives the possible composition of the catchment areas rocks; (2) the position of the syn-rift sandstone compositions, as well as the average values of various indicator ratios and discriminant functions, in the K2O/Na2O–SiO2/Al2O3, F3–F4, SiO2–K2O/Na2O and DF1–DF2 diagrams. The analysis of the results shows that the fields of the syn-rift sandstones are characterized by a wide dispersion of log(SiO2/Al2O3) (0.4…3.5) and log(Na2O/K2O) values (~0.2…6.0 and more). A number of the values do not fit into the typical areas on the classification diagram of F.J. Pettijohn et al., which suggests that the syn-rift sandstones vary considerably in composition that is controlled by a significant number of factors. The diagram of J. Maynard et al. is not suitable for assigning certain sandstone associations to the ‘syn-rift sandstones’ category. In the diagrams of M. Bhatia and K. Crook, as well as those of B. Roser and R. Korsch, the fields and mean points of the syn-rift sandstones are mainly located in the area of passive continental margins; thus, these diagrams can not be used to classify the syn-rift sandstone associations. Contrariwise, on the high-silica DF1–DF2 diagram [Verma, Armstrong-Altrin, 2013], ~80 % of the objects from our database are localized in the field of syn-rift compositions and show a good correlation with the ‘percentage of consistency’ evaluated by the authors for the samples from similar settings (79–85 %). Thus, according to the data presented in the article, the DF1–DF2 diagram is the most rational and acceptable discriminant diagram for assigning certain sandstone associations to the ‘syn-rift infilling’ category.

About the Authors

A. V. Maslov
A.N. Zavaritsky Institute of Geology and Geochemistry, Ural Branch of RAS; Institute of Geology, Ufa Scientific Centre of RAS.
Russian Federation
 Andrei V. Maslov, Doctor of Geology and Mineralogy, Corresponding Member of RAS, Head of Laboratory.  Ekaterinburg.


V. N. Podkovyrov
Institute of Precambrian Geology and Geochronology of RAS.
Russian Federation

Victor N. Podkovyrov, Doctor of Geology and Mineralogy, Head of Laboratory.

St. Petersburg.



E. Z. Gareev
Institute of Geology, Ufa Scientific Centre of RAS.
Russian Federation

Emir Z. Gareev, Candidate of Geology and Mineralogy, Senior Researcher.

Ufa.



N. D. Sergeeva
Institute of Geology, Ufa Scientific Centre of RAS.
Russian Federation

Nina D. Sergeeva, Candidate of Geology and Mineralogy, Lead Researcher.

Ufa.



References

1. Armstrong-Altrin J.S., Verma S.P., 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177 (1–2), 115–129. https://doi.org/10.1016/j.sedgeo.2005.02.004.

2. Bakkiaraj D., Nagendra R., Nagarajan R., Armstrong-Altrin J.S., 2010. Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, Southern India: implication for provenance. Journal of the Geological Society of India 76 (5), 453–467. https://doi.org/10.1007/s12594-010-0128-3.

3. Bhatia M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91 (6), 611–627. https://doi.org/10.1086/628815.

4. Bhatia M.R., Crook K.A.W., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92 (2), 181–193. https://doi.org/10.1007/BF00375292.

5. Caracciolo L., von Eynatten H., Tolosana-Delgado R., Critelli S., Manetti P., Marchev P., 2012. Petrological, geochemical, and statistical analysis of Eocene–Oligocene sandstones of the Western Thrace basin, Greece and Bulgaria. Journal of Sedimentary Research 82 (7), 482–498. https://doi.org/10.2110/jsr.2012.31.

6. Chamov N.P., 2016. The Structure and Development of the Mid-Russian−White Sea Province in the Neoproterozoic. GEOS, Moscow, 233 p. (in Russian) [Чамов Н.П. Строение и развитие Среднерусско-Беломорской провинции в неопротерозое. М.: ГЕОС, 2016. 233 с.].

7. Cohen A.S., 1990. Tectono-stratigraphic model for sedimentation in Lake Tanganyika, Africa. In: B.J. Katz (Ed.), Lacustrine basin exploration: case studies and modern analogs. American Association of Petroleum Geologists Memoir, vol. 50, p. 137–150.

8. Condie K.C., Lee D., Farmer G.L., 2001. Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes. Sedimentary Geology 141–142, 443–464. https://doi.org/10.1016/S0037-0738(01)00086-0.

9. Corti G., 2009. Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Science Reviews 96 (1–2), 1–53. https://doi.org/10.1016/j.earscirev.2009.06.005.

10. Crossley R., 1984. Controls of sedimentation in the Malawi Rift Valley, Central Africa. Sedimentary Geology 40 (1–3), 33–50. https://doi.org/10.1016/0037-0738(84)90038-1.

11. Cullers R.L., Berendsen P., 1998. The provenance and chemical variation of sandstones associated with the Mid-Continent Rift System, U.S.A. European Journal of Mineralogy 10 (5), 987–1002. https://doi.org/10.1127/ejm/10/5/0987.

12. Cullers R.L., Podkovyrov V.N., 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research 117 (3–4), 157–183. https://doi.org/10.1016/S0301-9268(02)00079-7.

13. Das B.K., Al-Mikhlafi A.S., Kaur P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences 26 (6), 649–668. https://doi.org/10.1016/j.jseaes.2005.01.005.

14. Deru X., Xuexiang G., Pengchun L., Guanghao C., Bin X., Bachlinski R., Zhuanli H., Gonggu F., 2007. Mesoproterozoic–Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze block, South China. Journal of Asian Earth Sciences 29 (5–6), 637–650. https://doi.org/10.1016/j.jseaes.2006.04.006.

15. Descourvieres C., Douglas G., Leyland L., Hartog N., Prommer H., 2011. Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, south-west Australia. Sedimentary Geology 236 (1–2), 62–76. https://doi.org/10.1016/j.sedgeo.2010.12.006.

16. Dostal J., Keppie J.D., 2009. Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico: Evidence for local provenance in felsic–intermediate igneous rocks. Sedimentary Geology 222 (3–4), 241–253. https://doi.org/10.1016/j.sedgeo.2009.09.011.

17. Dupuis C., Hebert R., Dubois-Cote V., Guilmette C., Wang C.S., Li Z.J., 2006. Geochemistry of sedimentary rocks from melange and flysch units south of the Yarlung Zangbo suture zone, southern Tibet. Journal of Asian Earth Sciences 26 (5), 489–508. https://doi.org/10.1016/j.jseaes.2004.11.002.

18. El-Rahman Y.A., Polat A., Fryer B.J., Dilek Y., El-Sharkawy M., Sakran S., 2010. The provenance and tectonic setting of the Neoproterozoic Um Hassa Greywacke Member, Wadi Hammamat area, Egypt: Evidence from petrography and geochemistry. Journal of African Earth Sciences 58 (2), 185–196. https://doi.org/10.1016/j.jafrearsci.2010.02.010.

19. Elzien S.M., Farah A.A., Alhaj A.B., Mohamed A.A., Al-Imam O.A.O., Hussein A.H., Khalid M.K., Hamed B.O., Alhaj A.B., 2014. Geochemistry of Merkhiyat sandstones, Omdurman Formation, Sudan: Implication of depositional environment, provenance and tectonic setting. International Journal of Geology, Agriculture and Environmental Sciences 2 (3), 10–15.

20. Etemad-Saeed N., Hosseini-Barzi M., Armstrong-Altrin J.S., 2011. Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. Journal of African Earth Sciences 61 (2), 142–159. https://doi.org/10.1016/j.jafrearsci.2011.06.003.

21. Evans A.L., 1990. Miocene sandstone provenance relations in the Gulf of Suez: insights into synrift unroofing and uplift history. American Association of Petroleum Geologists Bulletin 74 (9), 1386–1400. https://doi.org/10.1306/0C9B24D9-1710-11D7-8645000102C1865D.

22. Fatima S., Khan M.S., 2012. Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution. International Geology Review 54 (10), 1113–1144. https://doi.org/10.1080/00206814.2011.623032.

23. Garzanti E., Vezzoli G., Ando S., Castiglioni G., 2001. Petrology of rifted-margin sand (Red Sea and Gulf of Aden, Yemen). The Journal of Geology 109 (3), 277–297. https://doi.org/10.1086/319973.

24. Gawthorpe R.L., Leeder M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12 (3–4), 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x.

25. González-Álvarez I.J. 2005. Geochemical Study of the Mesoproterozoic Belt-Purcell Supergroup, Western North America: Implications for Provenance, Weathering and Diagenesis. A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Earth Sciences University of Saskatchewan. Saskatoon, 243 p.

26. Grachev A.F., 1987. Rift Zones of the Earth. Nedra, Leningrad, 247 p. (in Russian) [Грачев А.Ф. Рифтовые зоны Земли. Л.: Недра, 1987. 247 с.].

27. Huntsman-Mapila P., Kampunzu A.B., Vink B., Ringrose S., 2005. Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments, Botswana. Sedimentary Geology 174 (1–2), 123–148. https://doi.org/10.1016/j.sedgeo.2004.11.001.

28. Illies J.H., Greiner G., 1978. Rhinegraben and the Alpine system. Geological Society of America Bulletin 89 (5), 770–782. https://doi.org/10.1130/0016-7606(1978)89<770:RATAS>2.0.CO;2.

29. Ingersoll R.V., Cavazza W., Baldridge W.S., Shaficullah M., 1990. Cenozoic sedimentation and paleotectonics of north-central New Mexico: Implication for initiation and evolution of the Rio Grande rift. Geological Society of America Bulletin 102 (9), 1280–1296. https://doi.org/10.1130/0016-7606(1990)102<1280:CSAPON>2.3.CO;2.

30. Ivanov S.N., Samygin S.G. (Eds.), 1986. Formation of the Earth's Crust of the Urals. Nauka, Moscow, 248 p. (in Russian) [Формирование земной коры Урала / Ред. С.Н. Иванов, С.Г. Самыгин. М.: Наука, 1986. 248 с.].

31. Kaz’min V.G., 1987. Rift Structures of East Africa – the Breakup of the Continent and the Incipience of the Ocean. Nauka, Moscow, 205 p. (in Russian) [Казьмин В.Г. Рифтовые структуры Восточной Африки – раскол континента и зарождение океана. М.: Наука, 1987. 205 с.].

32. Khudoley A.K., Rainbird R.H., Stem R.A., Kropachev A.P., Heaman L.M., Zanin A.M., Podkovyrov V.N., Belova V.N., Sukhorukov V.I., 2001. Sedimentary Evolution of the Riphean–Vendian Basin of Southeastern Siberia. Precambrian Research 111 (1–4), 129–163. https://doi.org/10.1016/S0301-9268(01)00159-0.

33. Kroonenberg S.B., 1994. Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: T. Nishiyama, G.W. Fisher, F. Kumon, K.M. Yu, Y. Watanbe, A. Motamed (Eds.), Proceedings of the 29th International Geological Congress, Part A. VSP, Utrecht, p. 69–81.

34. Lambiase J.J., 1990. A model for tectonic control of lacustrine stratigraphic sequences in continental rift basins. In: B.J. Katz (Ed.), Lacustrine basin exploration: case studies and modern analogs. American Association of Petroleum Geologists Memoir, vol. 50, p. 265–276.

35. Lambiase J.J., Bosworth W., 1995. Structural controls on sedimentation in continental rifts. In: J.J. Lambiase (Ed.), Hydrocarbon Habitat in rift basins. Geological Society, London, Special Publications, vol. 80, p. 117–144. https://doi.org/10.1144/GSL.SP.1995.080.01.06.

36. Leonov Yu.G., Volozh Yu.A. (Eds.), 2004. Sedimentary Basins: Methods of Research, Structure and Evolution. Nauchnyi Mir, Moscow, 526 p. (in Russian) [Осадочные бассейны: методика изучения, строение и эволюция / Ред. Ю.Г. Леонов, Ю.А. Волож. М.: Научный мир, 2004. 526 с.].

37. Logatchev N.A., 1977. Volcanogenic and Sedimentary Formations of the Rift Zones of East Africa. Nauka, Moscow, 183 p. (in Russian) [Логачев Н.А. Вулканогенные и осадочные формации рифтовых зон Восточной Африки. М.: Наука, 1977. 183 с.].

38. Maslov A.V., 1994. Sedimentary Complexes in the Riftogenic Structures. Yekaterinburg: IGG, Urals Branch of RAS, 162 p. (in Russian) [Маслов А.В. Осадочные комплексы в разрезах рифтогенных структур. Екатеринбург: ИГГ УрО РАН, 1994. 162 с.].

39. Maslov A.V., Gareev E.Z., 1994. The main features of the petrochemical evolution of the sandstones of the Riphean stratotype in the Southern Urals. Litologiya i Poleznyye Iskopayemyye (Lithology and Mineral Resources) (4), 119–127. (in Russian) [Маслов А.В., Гареев Э.З. Основные черты петрохимической эволюции песчаников стратотипического разреза рифея на Южном Урале // Литология и полезные ископаемые. 1994. № 4. С. 119–127].

40. Maslov A.V., Gareev E.Z., 1996. Origin of Lower Proterozoic sandstone associations of the Southern Urals: major-element and petrographic evidence. Geochemistry International 34 (3), 249–258.

41. Maslov A.V., Gareev E.Z., Isherskaya M.V., 2012a. «Standard» discriminant paleogeodynamic diagrams and platform sandstone associations. Otechestvennaya Geologiya (Russian Geology) (3), 55–65 (in Russian) [Маслов А.В., Гареев Э.З., Ишерская М.В. «Стандартные» дискриминантные палеогеодинамические диаграммы и платформенные песчаниковые ассоциации // Отечественная геология. 2012. № 3. С. 55–65].

42. Maslov A.V., Isherskaya M.V., 2002. Riphean sedimentary sequences of the eastern and northeastern margins of the Eastern European craton. Russian Journal of Earth Sciences 4 (4), 271–276. http://rjes.wdcb.ru/v04/tje02097/tje02097.htm.

43. Maslov A.V., Kovalev S.G., Puchkov V.N., Sergeeva N.D., 2018. The Riphean Arsha group of the Southern Urals: on the problem of a geodynamic nature of its rock associations. Doklady Earth Sciences (in press).

44. Maslov A.V., Krupenin M.T., Gareev E.Z., Anfimov L.V., 2001. Riphean of the Western Slope of the Southern Urals (Classical Cross-Sections, Sedimento- and Lithogenesis, Minerageny, Geological Nature Monuments). Vol. I. IGG, Urals Branch of RAS, Yekaterinburg, 351 p. (in Russian) [Маслов А.В., Крупенин М.Т., Гареев Э.З., Анфимов Л.В. Рифей западного склона Южного Урала (классические разрезы, седименто- и литогенез, минерагения, геологические памятники природы). Екатеринбург: ИГГ УрО РАН, 2001. Т. I. 351 с.].

45. Maslov A.V., Mizens G.A., Podkovyrov V.N., Gareev E.Z., Sorokin A.A., Smirnova Yu.N., Sokur T.M., 2013. Synorogenic psammites: major lithochemical features. Lithology and Mineral Resources 48 (1), 74–97. https://doi.org/10.1134/S0024490212050045.

46. Maslov A.V., Mizens G.A., Podkovyrov V.N., Nozhkin A.D., Sokur T.M., Malinovskii A.I., Sorokin A.A., Smirnova Yu.N., Gareev E.Z., Dmitrieva N.V., Krupenin M.T., Letnikova E.F., 2015. Synorogenic clay rocks: specifics of bulk composition and paleotectonics. Geochemistry International 53 (6), 510–533. https://doi.org/10.1134/S0016702915060075.

47. Maslov A.V., Podkovyrov V.N., Gareev E.Z. 2012b. Evolution of the paleogeodynamic settings of the formation of the Lower and Middle Riphean sedimentary sequences of the Uchur–Maya region and the Bashkir meganticlinorium. Russian Journal of Pacific Geology 6 (5), 382–394. https://doi.org/10.1134/S1819714012050041.

48. Maslov A.V., Podkovyrov V.N., Gareev E.Z., Kotova L.N., 2016a. Chemical composition of sandstones and paleogeodynamic reconstructions. Litosfera (Lithosphere) (6), 33–55 (in Russian) [Маслов А.В., Подковыров В.Н., Гареев Э.З., Котова Л.Н. Валовый химический состав песчаников и палеогеодинамические реконструкции // Литосфера. 2016. № 6. С. 33–55].

49. Maslov A.V., Podkovyrov V.N., Mizens G.A., Nozhkin A.D., Fazliakhmetov A.M., Malinovsky A.I., Khudoley A.K., Kotova L.N., Kuptsova A.V., Gareev E.Z., Zainullin R.I. 2016b. Tectonic setting discrimination diagrams for terrigenous rocks: a comparison. Geochemistry International 54 (7), 569–583. https://doi.org/10.1134/S0016702916060033.

50. Maynard J.B., Valloni R., Ho Shing Ju, 1982. Composition of modern deep-sea sands from arc-related basin. In: J.K. Leggett (Ed.), Trench-forearc geology: sedimentation and tectonics on modern and ancient active plate margins. Geological Society, London, Special Publications, vol. 10, p. 551–561. https://doi.org/10.1144/GSL.SP.1982.010.01.36.

51. McCann T., 1998. Sandstone composition and provenance of the Rotliegend of the NE German basin. Sedimentary Geology 116 (3–4), 177–198. https://doi.org/10.1016/S0037-0738(97)00106-1.

52. Milanovsky E.E., 1976. Continental Rift Zones. Nedra, Moscow, 280 p. (in Russian) [Милановский Е.Е. Рифтовые зоны континентов. М.: Недра, 1976. 280 с.].

53. Milanovsky E.E., 1983. Riftogenesis in the history of the Earth (rifting on ancient platforms). Nedra, Moscow, 280 p. (in Russian) [Милановский Е.Е. Рифтогенез в истории Земли (рифтогенез на древних платформах). М.: Недра, 1983. 280 с.].

54. Morley C.K., 1989. Extension, detachments, and sedimentation in continental rifts (with particular reference to East Africa). Tectonics 8 (6), 1175–1192. https://doi.org/10.1029/TC008i006p01175.

55. Morley C.K. (Ed.), 1999. Geoscience of Rift Systems – Evolution of East Africa. American Association of Petroleum Geologists, Studies in Geology, vol. 44, 250 p.

56. Murphy J.B., Keppie J.D., Dostal J., Waldron J.W.F., Cude M.P., 1996. Geochemical and isotopic characteristics of Early Silurian clastic sequences in Antigonish Highlands, Nova Scotia, Canada: constraints on the accretion of Avalonia in the Appalachian–Caledonide Orogen. Canadian Journal of Earth Sciences 33 (3), 379–388. https://doi.org/10.1139/e96-028.

57. Olsen K.H. (Ed.), 1995. Continental rifts: Evolution, Structure, Tectonics. Elsevier, Amsterdam, 465 p.

58. Pettijohn F.J., Potter P.E., Siever R., 1972. Sand and Sandstone. Springer, New York, 553 p. [Русский перевод: Петтиджон Ф.Дж., Поттер П., Сивер Р. Пески и песчаники. М.: Мир, 1976. 534 с.].

59. Postma G., Drinia H., 1993. Architecture and sedimentary facies evolution of a marine, expanding half-graben (Crete, Late Miocene). Basin Research 5 (2), 103–124. https://doi.org/10.1111/j.1365-2117.1993.tb00060.x.

60. Puchkov V.N., 2000. Paleogeodynamics of the Southern and Middle Urals. GILEM Publishing House, Ufa, 146 p. (in Russian) [Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: ГИЛЕМ, 2000. 146 с.].

61. Puchkov V.N., 2010. Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny). DesignPoligraphService Publishing House, Ufa, 280 p. (in Russian) [Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.].

62. Puchkov V.N., 2016. Relationship between plume and plate tectonics. Geotectonics 50 (4), 425–438. https://doi.org/10.1134/S0016852116040075.

63. Rasskazov S.V., Sherman S.I., Levi К.G., Ruzhich V.V., Kozhevnikov V.М., San’kov V.А., 2010. Academician N.A. Logatchev and his scientific school: contribution to studies of the Cenozoic continental rifting. Geodynamics & Tectonophysics 1 (3), 209–224 (in Russian) [Рассказов С.В., Шерман С.И., Леви К.Г., Ружич В.В., Кожевников В.М., Саньков В.А. Академик Н.А. Логачев и его научная школа: вклад в изучение кайнозойского континентального рифтогенеза // Геодинамика и тектонофизика. 2010. Т. 1. № 3. P. 209–224]. https://doi.org/10.5800/GT-2010-1-3-0017.

64. Raza M., Dayal A.M., Khan A., Bhardwaj V.R., Rais S., 2010. Geochemistry of lower Vindhyan clastic sedimentary rocks of Northwestern Indian shield: Implications for composition and weathering history of Proterozoic continental crust. Journal of Asian Earth Sciences 39 (1–2), 51–61. https://doi.org/10.1016/j.jseaes.2010.02.007.

65. Razvalyaev A.V., 1988. Continental Rifting and Its Prehistory. Nedra, Moscow, 189 p. (in Russian) [Разваляев А.В. Континентальный рифтогенез и его предыстория. М.: Недра, 1988. 189 с.].

66. Renaut R.W., Ashley G.M. (Eds.), 2002. Sedimentation in Continental Rifts. SEPM Special Publication. No. 73, 334 p.

67. Rosendahl B.R., 1987. Architecture of continental rifts with special reference to East Africa. Annual Review of Erath and Planetary Sciences 15, 445–503. https://doi.org/10.1146/annurev.ea.15.050187.002305.

68. Roser B.P., Korsch R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology 94 (5), 635–650. https://doi.org/10.1086/629071.

69. Roy D.K., Roser B.P., 2012. Geochemistry of Tertiary sequence in Shahbajpur-1 well, Hatia trough, Bengal basin, Bangladesh: provenance, source weathering and province affinity. Journal of Life and Earth Science 7, 1–13. https://doi.org/10.3329/jles.v7i0.20115.

70. Ryan K.M., Williams D.M., 2007. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology 242 (1–2), 103–125. https://doi.org/10.1016/j.chemgeo.2007.03.013.

71. Rykus M.V., Snachev V.I., Nasibullin R.A., Rykus N.G., Savel’ev D.E., 2002. Sedimentation, Magmatism and Ore-Bearing Potential of the Northern Part of the Uraltau Zone. IG USC of RAS, Ufa, 266 p. (in Russian) [Рыкус М.В., Сначёв В.И., Насибуллин Р.А., Рыкус Н.Г., Савельев Д.Е. Осадконакопление, магматизм и рудоносность северной части зоны Уралтау. Уфа: ИГ УНЦ РАН, 2002. 266 с.].

72. Schlishe R.W., 1991. Half‐graben basin filling models: new constraints on continental extensional basin development. Basin Research 3 (3), 123–141. https://doi.org/10.1111/j.1365-2117.1991.tb00123.x.

73. Şengör A.M.C., 1995. Sedimentation and tectonics of fossil rifts. In: C.J. Busby, R.-V. Ingersoll (Eds.), Tectonics of sedimentary basins. Blackwell, Oxford, p. 53–117.

74. Şengör A.M.C., Natal'in B.A., 2001. Rifts of the world. In: R.E. Ernst, K.L. Buchan (Eds.), Mantle plumes: their identification through time. Geological Society of America Special Papers, vol. 352, p. 389–482. https://doi.org/10.1130/0-8137-2352-3.389.

75. Surkov V.S., Korobeinikov V.P., Grishin M.P., 1993. Development of the oil and gas basins of Siberia in the Neogäikum. Otechestvennaya geologiya (Russian Geology) (6), 39–45 (in Russian) [Сурков В.С., Коробейников В.П., Гришин М.П. Развитие нефтегазоносных бассейнов Сибири в неогее // Отечественная геология. 1993. № 6. С. 39–45].

76. Svendsen J., Friis H., Stollhofen H., Hartley N., 2007. Facies discrimination in a mixed fluvio-eolian setting using elemental whole-rock geochemistry – applications for reservoir characterization. Journal of Sedimentary Research 77 (1), 23–33. https://doi.org/10.2110/jsr.2007.008.

77. Vdačný M., Vozárová A., Vozár J., 2013. Geochemistry of the Permian sandstones from the Malužiná Formation in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting. Geologica Carpathica 64 (1), 23–38. https://doi.org/10.2478/geoca-2013-0002.

78. Verma S.P., Armstrong-Altrin J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014.

79. Wang B.-Q., Wang W., Zhou M.-F., 2013. Provenance and tectonic setting of the Triassic Yidun Group, the Yidun Terrane, Tibet. Geoscience Frontiers 4 (6), 765–777. https://doi.org/10.1016/j.gsf.2013.02.007.

80. Withjack M.O., Schlische R.W., Olsen P.E., 1998. Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America – an analog for other passive margins. American Association of Petroleum Geologists Bulletin 82 (5A), 817–835.

81. Zaid S.M., 2013. Genesis of the Nukhul sandstones, west central Sinai, Egypt. Journal of Applied Sciences Research 9 (1), 375–392.

82. Ziegler P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw 73 (2–4), 99–127.


Review

For citations:


Maslov A.V., Podkovyrov V.N., Gareev E.Z., Sergeeva N.D. SYN-RIFT SANDSTONЕS: THE FEATURES OF BULK CHEMICAL COMPOSITIONS, AND POSITIONS ON PALEOGEODYNAMIC DISCRIMINANT DIAGRAMS. Geodynamics & Tectonophysics. 2018;9(1):59-80. (In Russ.) https://doi.org/10.5800/GT-2018-9-1-0337

Views: 1267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)