THE FIRST EXPERIENCE IN DIAGNOSING THE GEODYNAMIC MECHANISMS OF FOLDING BY THE FACTOR ANALYSIS OF FOLDED STRUCTURE PARAMETERS (GREATER CAUCASUS)
https://doi.org/10.5800/GT-2017-8-4-0329
Abstract
This article is focused on identifying geodynamic mechanisms leading to formation of large crustal blocks in nature. A specific feature of our study is statistical analysis of the data obtained by the methods of tectonophysics and structural geology. The analyzed material included 24 detailed structural sections (almost500 kmin total length) of Greater Caucasus. The Meso-Cenozoic sedimentary cover, that was intensely folded in the Oligocene and Early Miocene, is 10–15 km thick. A structure balanced in strain amounts and sediments volumes was reconstructed for three stages in the development of the studied area: 1 – pre-folded, 2 – post-folded, 3 – modern post-orogenic. The ‘geometry of folded domains’ method was used. For this purpose, 505 structural domains were identified in the detailed structural sections, the pre-fold state for every domain were reconstructed, and all the domains were aggregated into 78 structural cells. The reconstructions were based on structural indicators measurable in the folds forming the folded domains. Each structural cell was characterized by six parameters: an amount of shortening; depths of the basement top in the pre-folded, post-folded, and modern stages (i.e. stages 1, 2, and 3, respectively); a calculated position of the eroded top of the sedimentary cover (i.e. amplitude of orogenic uplifting); and a difference between the basement depths in stages 1 and 3. For 78 structural cells, shortening is about 50 % on average (from 2–10 % to 67 %). An average modern depth of the basement top is13 km(from 2.2 to31.7 km). The amplitudes of uplifting and of the erosion of top of the sedimentary cover for large blocks are in a range from 9 to19 km. Steady combinations of these values forming certain structures have been detected on the studied areas. It was found that the depth of the basement top in stage 3 (modern) has tendency to keep the value similar to the depth acquired in stage 1 (pre-folded) generally. This effect may be caused by an isostasy.. A number of estimated high values of the pair correlations have a genetic meaning. Using the factor analysis (as generalization of pairs correlations), we detected two factors related to the geodynamic mechanisms leading to formation of the structures larger than the cells – of the crust, and the upper mantle. Factor F1 (shortening, 60 % weight) depends on the amount of shortening and is responsible for amplitudes of uplifting. Factor F2 (isostasy, 27 % weight) is related to the initial thickness of the cover; it is responsible for the stability of the depth of the basement top. Isostasy assumes significant changes in the density of rocks in the crust and mantle, including the obtaining of mantle density volumes by the large volumes of the crust rocks. The factor “isostasy” in such kind was not taken into account in geodynamic models earlier.
About the Authors
F. L. YakovlevRussian Federation
Yakovlev, Fyodor L., Doctor of Geology and Mineralogy, Lead Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
E. S. Gorbatov
Russian Federation
Gorbatov, Evgenii S., Candidate of Geology and Mineralogy, Senior Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
References
1. Belonin M.D., Golubeva V.A., Skublov G.T., 1982. Factorial Analysis in Geology. Nedra, Moscow, 269 p. (in Russian) [Белонин М.Д., Голубева В.А., Скублов Г.Т. Факторный анализ в геологии. М.: Недра, 1982. 269 с.]
2. Cloetingh S., Burov E., Francois T., 2013. Thermo-mechanical controls on intra-plate deformation and the role of plume-folding interactions in continental topography. Gondwana Research 24 (3–4), 815–837. https://doi.org/10.1016/j.gr.2012.11.012.
3. Dotduyev S.I., 1987. Nappe structure of the Greater Caucasus Range. Geotectonics 20, 420–430.
4. Giorgobiani T.V., Zakaraya D.P., 1989. The Folded Structure of the North-Western Caucasus and the Mechanism of Its Formation. Metsniereba, Tbilissi, Georgia, 60 p. (in Russian) [Гиоргобиани Т.В., Закарая Д.П. Складчатая структура Северо-Западного Кавказа и механизм ее формирования. Тбилиси: Мецниереба, 1989. 60 с.]
5. Goncharov M.A., 1979. Density Inversion in Earth's Crust and Folding Formation. Nedra, Moscow, 246 p. (in Russian) [Гончаров М.А. Инверсия плотности в земной коре и складкообразование. М.: Недра, 1979. 246 с.].
6. Gorbatov E.S., Yakovlev F.L., 2016. The study of geodynamic development of a structure of Greater Caucasus by me¬thods of multidimensional statistics. In: The scientific conference of young scientists and graduate students of IPE RAS. Theses of reports and program of the Conference (Moscow, April 25–26, 2016). IPE RAS, Moscow, p. 27 (in Russian) [Горбатов Е.С. Яковлев Ф.Л. Изучение геодинамического развития сооружения Большого Кавказа методами многомерной статистики // Научная конференция молодых ученых и аспирантов ИФЗ РАН: Тезисы докладов и программа конференции (Москва, 25–26 апреля 2016 г.). М.: ИФЗ РАН, 2016. С. 27]. Available from: http://yak.ifz.ru/pdf-lib-yak/gorbatov-yak-16.pdf.
7. Gzovsky M.V., 1963. The Main Issues of Tectonophysics and Tectonics of Baydzhansaysky Anticlinorium. Parts III and IV. Publishing House of the USSR Academy of Sciences, Moscow, 544 p. (in Russian) [Гзовский М.В. Основные вопросы тектонофизики и тектоника Байджансайского антиклинория. Ч. III, IV. М.: Изд-во АН СССР, 1963. 544 с.].
8. Kastelic V., Carafa M.M.C., 2012. Fault slip rates for the active External Dinarides thrust-and-fold belt. Tectonics 31 (3), TC3019. https://doi.org/10.1029/2011TC003022.
9. Lawley D.N., Maxwell A.E., 1963. Factor Analysis as a Statistical Method. Butterworths, London, 117 p. [Русский перевод: Лоули Д., Максвелл А. Факторный анализ как статистический метод. М.: Мир, 1967. 144 с.].
10. Leonov Yu.G. (Ed.), 2007. The Greater Caucasus in the Alpine Epoch. GEOS, Moscow, 368 p. (in Russian) [Большой Кавказ в альпийскую эпоху / Ред. Ю.Г. Леонов. М.: ГЕОС, 2007. 368 с.]
11. Marinin A.V., Rastsvetaev L.M., 2008. Tectonic structures of the North-West Caucasus. In: Yu.L. Rebetsky (Ed.), Tectonophysics and actual problem of Earth sciences. 40th anniversary of the foundation of Tectonophysics Laboratory. Institute of Physics of the Earth of RAS, Moscow, p. 191–224 (in Russian) [Маринин А.В., Расцветаев Л.М. Структурные парагенезы Северо-Западного Кавказа // Тектонофизика и актуальные вопросы наук о Земле. К 40-летию создания М.В. Гзовским лаборатории тектонофизики в ИФЗ РАН / Ред. Ю.Л. Ребецкий. М.: ИФЗ РАН, 2008. С. 191–224].
12. Milanovsky E.E., 1968. Neotectonics of the Caucasus. Nedra, Moscow, 483 p. (in Russian) [Милановский Е.Е. Новейшая тектоника Кавказа. М.: Недра, 1968. 483 с.].
13. Milanovsky E.E., Khain V.E., 1963. Geological Structure of Caucasus. MSU Publishing House, Moscow, 357 p. (in Russian) [Милановский Е.Е., Хаин В.Е. Геологическое строение Кавказа. М.: Изд-во МГУ, 1963. 357 с.].
14. Mosar J., Kangarli T., Bochud M., Brunet M.-F., Glasmacher U.A., Rast A., Sosson M., 2010. Cenozoic – Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. In: M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko (Eds.), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian platform. Geological Society, London, Special Publications, vol. 340, p. 261–280. https://doi.org/10.1144/SP340.12.
15. Prokopiev A.V., Fridovsky V.Yu., Gayduk V.V., 2004. Faults (Morphology, Geometry and Kinematics). Textbook. Yakutian Filial of SB RAS Publishing House, Yakutsk, 148 p. (in Russian) [Прокопьев А.В., Фридовский В.Ю., Гайдук В.В. Разломы (морфология, геометрия и кинематика): Учебное пособие. Якутск: ЯФ Изд-ва СО РАН, 2004. 148 с.].
16. Rebetsky Yu.L., Marinin A.V., 2006. Preseismic stress field before the Sumatra-Andaman earthquake of 26.12.2004: a model of metastable state of rocks. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (11), 1173–1185.
17. Rogozhin Ye.A., Yakovlev F.L., 1983. A quantitative estimate of the morphology of folding in the Tfan Zone of the Grea¬ter Caucasus. Geotektonika (Geotectonics) (3), 87–98 (in Russian) [Рогожин Е.А., Яковлев Ф.Л. Опыт количественной оценки морфологии складчатости Тфанской зоны Большого Кавказа // Геотектоника. 1983. № 3. С. 87–98].
18. Saintot A., Angelier J., 2002. Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary. Tectonophysics 357 (1–4), 1–31. https://doi.org/10.1016/S0040-1951(02)00360-8.
19. Saintot A., Stephenson R., Brunet M.-F., Sébrier M., Yakovlev F., Ershov A., Chalot-Prat F., McCann T., 2006. The Mesozoic–Cenozoic Tectonic Evolution of the Greater Caucasus. In: D.G. Gee, R.A. Stephenson (Eds.), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 277–289. https://doi.org/10.1144/GSL.MEM.2006.032.01.16.
20. Seminskii K.Zh., 2008. Hierarchy in the zone-block lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics 49 (10), 771–779. https://doi.org/10.1016/j.rgg.2007.11.017.
21. Sherman S.I., 1984. The physical experiment in the tectonics and the similarity theory. Geologiya i Geofizika (Russian Geology and Geophysics) (3), 8–18 (in Russian) [Шерман С.И. Физический эксперимент в тектонике и теория подобия // Геология и геофизика. 1984. № 3. С. 8–18].
22. Sherman S.I., Lysak S.V., Gorbunova E.A., 2012. A tectonophysical model of the Baikal seismic zone: Testing and implications for medium-term earthquake prediction. Russian Geology and Geophysics 53 (4), 392–405. https://doi.org/10.1016/j.rgg.2012.03.003.
23. Sholpo V.N., 1978. The Alpine Geodynamics of the Greater Caucasus. Nedra, Moscow, 176 p. (in Russian) [Шолпо В.Н. Альпийская геодинамика Большого Кавказа. М.: Недра, 1978. 176 с.].
24. Sholpo V.N., Rogozhin E.A., Goncharov M.A., 1993. The Folding of the Great Caucasus. Nedra, Moscow, 192 p. (in Russian) [Шолпо В.Н., Рогожин Е.А., Гончаров М.А. Складчатость Большого Кавказа. М.: Наука, 1993. 192 с.].
25. Sim L.A., 1982. Determination of the regional field from the data on local stresses on separate sites. Izvestiya vuzov. Geologiya i Razvedka (Geology and Exploration) (4), 35–40 (in Russian) [Сим Л.А. Определение регионального поля по данным о локальных напряжениях на отдельных участках // Известия вузов. Геология и разведка. 1982. № 4. С. 35–40].
26. Somin M.L., 2011. Pre-Jurassic basement of the Greater Caucasus: brief overview. Turkish Journal of Earth Sciences 20 (5), 545–610. https://doi.org/10.3906/yer-1008-6.
27. Sukharev G.M., Taranukha Yu.K., 1979. Mineral deposits of the Caucasus. Nedra, Moscow, 176 p. (in Russian) [Сухарев Г.М., Тарануха Ю.К. Полезные ископаемые Кавказа. М.: Недра, 1979. 176 с.].
28. Timoshkina E.P., Mikhailov V.O., Leonov Y.G., 2010. Formation of the Orogen-Foredeep System: A Geodynamic Model and Comparison with the Data of the Northern Forecaucasus. Geotectonics 44 (5). 371–387. https://doi.org/10.1134/S0016852110050018.
29. Trifonov V.G., Sokolov S.Yu., 2014. Late Cenozoic tectonic uplift producing mountain building in comparison with mant¬le structure in the Alpine-Himalayan belt. International Journal of Geosciences 5 (5), 497–518. https://doi.org/10.4236/ijg.2014.55047.
30. Yakovlev F.L., 1987. A study of the kinematic of linear folding (on the example of the South-Eastern Caucasus). Geotektonika (Geotectonics) (4), 31–48 (in Russian) [Яковлев Ф.Л. Исследование кинематики линейной складчатости (на примере Юго-Восточного Кавказа) // Геотектоника. 1987. № 4. С. 31–48].
31. Yakovlev F.L., 1997. The recognition of linear folding mechanisms based on quantitative attributes of its morphology (on the Greater Caucasus example). Preprint. UIPE RAS, Moscow, 76 p. (in Russian) [Яковлев Ф.Л. Диагностика механизмов образования линейной складчатости по количественным критериям ее морфологии (на примере Большого Кавказа). Препринт. М.: ОИФЗ РАН, 1997. 76 с.]. Available from: http://yak.ifz.ru/pdf-lib-yak/yak-book-97.pdf.
32. Yakovlev F.L., 2008a. Multirank strain analysis of linear folded structures. Doklady Earth Sciences 422 (7), 1056–1061. https://doi.org/10.1134/S1028334X08070118.
33. Yakovlev F.L., 2008b. Vladimir Vladimirovich Belousov and the problem of folding formation. Geofizicheskiye Issledovaniya (Geophysical Researches) 9 (1), 56–75 (in Russian) [Яковлев Ф.Л. Владимир Владимирович Белоусов и проблема происхождения складчатости // Геофизические исследования. 2008. Т. 9. № 1. С. 56–75].
34. Yakovlev F.L., 2008c. The study of post-folding mountain building – first results and approaches to mechanisms diagnostics on the North-West Caucasus example. In: Common and regional problems of tectonics and geodynamic. The materials of XLI Tectonic meeting. GEOS, Moscow, vol. 2, p. 510–515 (in Russian) [Яковлев Ф.Л. Исследование постскладчатого горообразования – первые результаты и подходы к диагностике механизмов на примере Северо-Западного Кавказа // Общие и региональные проблемы тектоники и геодинамики: Материалы XLI Тектонического совещания. М.: ГЕОС, 2008c. Т. 2. С. 510–515].
35. Yakovlev F.L., 2009. Reconstruction of linear fold structures with the use of volume balancing. Izvestiya, Physics of the Solid Earth 45 (11), 1025–1036. https://doi.org/10.1134/S1069351309110111.
36. Yakovlev F.L., 2012a. Identification of geodynamic setting and of folding formation mechanisms using of strain ellipsoid concept for multi-scale structures of Greater Caucasus. Tectonophysics 581, 93–113. https://doi.org/10.1016/j.tecto.2012.06.004.
37. Yakovlev F.L., 2012b. Methods for detecting formation mechanisms and determining a final strain value for different scales of folded structures. Comptes Rendus Geoscience 344 (3–4), 125–137. https://doi.org/10.1016/j.crte.2012.02.005.
38. Yakovlev F.L., 2012c. Reconstruction of the balanced structure of the eastern part of alpine Greater Caucasus using data from quantitative analysis of linear folding – case study. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences. (1), 191–214 (in Russian) [Яковлев Ф.Л. Опыт построения сбалансированной структуры восточной части альпийского Большого Кавказа по данным количественных исследований линейной складчатости // Вестник КРАУНЦ, серия Науки о Земле. 2012. № 1. С. 191–214.
39. Yakovlev F.L., 2015a. Multirank Strain Analysis of Linear Folding on the Example of the Alpine Greater Caucasus. Doctoral thesis. IPE RAS, Moscow, 472 p. (in Russian) [Яковлев Ф.Л. Многоранговый деформационный анализ линейной складчатости на примере альпийского Большого Кавказа: Дис. … докт. геол.-мин. наук. М.: ИФЗ РАН, 2015. 472 с.]. Available from: http://yak.ifz.ru/pdf-lib-yak/Yakovlev-doct_diss_2015-russ-full.pdf.
40. Yakovlev F.L., 2015b. About the evidence of influence of an isostasy on formation of folded and mountain building structure of Greater Caucasus. In: Tectonics and geodynamics of a continental and oceanic lithosphere: general and regional aspects. Materials of XLVII Tectonic meeting. GEOS, Moscow, vol. 2, p. 314–318 (in Russian) [Яковлев Ф.Л. О свидетельствах влияния изостазии на формирование складчатой и орогенной структуры Большого Кавказа // Тектоника и геодинамика континентальной и океанической литосферы: общие и региональные аспекты: Материалы XLVII Тектонического совещания. М.: ГЕОС, 2015b. Т. 2. С. 314–318].
41. Yakovlev F.L., 2017. Reconstruction of Folded and Faulted Structures in Zones of the Linear Folding Using Structural Cross-Sections. IPE RAS, Moscow, 60 p. (in Russian) [Яковлев Ф.Л. Реконструкция складчато-разрывных структур в зонах линейной складчатости по структурным разрезам. М.: ИФЗ РАН, 2017. 60 с.]. Available from: http://yak.ifz.ru/pdf-lib-yak/Реконструкция-складчатости-Яковлев-2017.pdf.
42. Yakovlev F.L., Voitenko V.N., 2005. Application of the deformation tensor conception for the estimation of deformations in different-scale folded structures. In: Proceedings of VII International Interdisciplinar symposium and International Geoscience Programme (IGCP–476) “Regularity of structure and evolution of geospheres” (Vladivostok, September 20–25, 2005). Pacific Oceanological Institute of FEB RAS, Vladivostok, p. 66–69.
Review
For citations:
Yakovlev F.L., Gorbatov E.S. THE FIRST EXPERIENCE IN DIAGNOSING THE GEODYNAMIC MECHANISMS OF FOLDING BY THE FACTOR ANALYSIS OF FOLDED STRUCTURE PARAMETERS (GREATER CAUCASUS). Geodynamics & Tectonophysics. 2017;8(4):999-1019. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0329