DETERMINATION OF WEAK EARTHQUAKE FOCAL MECHANISMS AND MODERN GEODYNAMICS OF SOUTHERN IRAN
https://doi.org/10.5800/GT-2017-8-4-0327
Abstract
The Southern Iran territory, including the Zagros region and the margins of the Arabian and Eurasian plates, is a seismically active area with large industrial facilities of Iran. In this respect, studying modern geodynamics of this area is a top research task. This article presents a part of the studies conducted by the IPE RAS Seismological Expedition led by the Doctor of Physics and Mathematics S.S. Arefiev in 1999–2001. The research team studied the seismic setting on the construction site of the Bushehr Nuclear Power Plant. The main results discussed in the present article are the focal mechanism solutions based on the data of the IPE RAS seismic network. The network was deployed in the junction area of the Fars and Dezful tectonic provinces (north of the Bushehr NPP) and covered an area of 100´100 km. A specific feature of the seismic network was that it comprised local networks, and each local station was focused, first of all, on determining the precise locations of earthquake epicenters in a particular section of the crust. However, the scarcity of stations in such local networks and the technologies available at that time did not allow us to determine the mechanisms of earthquake foci. This problem was solved by integrating the seismological and tectonophysical methods. In the analysis, we used the tectonophysical approach that is usually applied to reconstruct stresses from the data on slickensides. This approach is based on a specific algorithm of the kinematic method developed by O.I. Gushchenko, which is used in the absence of sliding direction signs. It became possible, in addition to a few signs from the first P-wave arrivals (1–2 confident signs), to use the data on the S-wave polarization direction. By applying the Gushchenko algorithm to such data, the areas of P and T axes were quite reliably localized on a single hemisphere for determining the focal mechanisms. The focal mechanisms computed for 72 earthquakes correspond to the Kazerooni-Borazdzhan shearing zone and, at the same time, are indicative of the presence of crust incision mechanisms in the Bushehr Peninsula. The focal mechanisms computed in our study, as well as the mechanisms reported in the Global CMT Project Catalogue, show that the Bushehr Peninsula is located near the western boundary of the zone of strike-slip faults, which extends from the north (Zagros) to the south (the Persian Gulf) and widens as a horsetail-shape structure. In the crust of the Persian Gulf coast, the intensity of the strike-slip component in the earthquake focal mechanism is minimal. The earthquake mechanisms in this region are mainly related to thrusting, reverse faulting and even the crust incision.
About the Authors
Yu. L. RebetskyRussian Federation
Rebetsky, Yuri L., Doctor of Physics and Mathematics, Head of Laboratory
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
A. A. Lukk
Russian Federation
Lukk, Albert A., Candidate of Physics and Mathematics, Lead Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
R. E. Tatevossian
Russian Federation
Tatevossian, Ruben E., Doctor of Physics and Mathematics, Head of Laboratory
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
V. V. Bykova
Russian Federation
Bykova, Vera V., Candidate of Physics and Mathematics, Lead Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia
References
1. Balakina L.M., Vvedenskaya A.V., Golubeva N.V., Misharina L.A., Shirokova E.I., 1972. The Field of Elastic Stresses of the Earth and Earthquake Focal Mechanisms. Nauka, Moscow, 191 p. (in Russian) [Балакина Л.М., Введенская A.B., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 191 с.].
2. Berberian M., 1983. Continental Deformation in the Iranian Plateau (Contribution to the Seismotectonics of Iran, Part IV). Geological Survey of Iran. Report 52. 625 p.
3. DeMets C., Gordon R.G., Argus D.F., Stein S., 1990. Current plate motion. Geophysical Journal International 101 (2), 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x.
4. Gushchenko O.I., 1975. The kinematical principle of reconstruction of directions of major stresses (from geological and seismological data). Doklady AN SSSR 225 (3), 557–560 (in Russian) [Гущенко О.И. Кинематический принцип реконструкции направлений главных напряжений (по геологическим и сейсмологическим данным) // Доклады АН СССР. 1975. Т. 225. № 3. С. 557–560].
5. Gushchenko O.I., 1979. The method of kinematic analysis of destruction structures in reconstruction of tectonic stress fields. In: Fields of stress and strain in the lithosphere. Nauka, Moscow, 7–25 (in Russian) [Гущенко О.И. Метод кинематического анализа структур разрушения при реконструкции полей тектонических напряжений // Поля напряжений и деформаций в литосфере. М.: Наука, 1979. С. 7–25].
6. Gushchenko O.I., 1987. Determination of tectonic stress fields by the kinematic analysis of fracture structures in relation to seismic hazard forecasting. In: M.A. Sadovsky (Ed.), Nature and methodology for determining tectonic stresses in the upper crust. Kola Branch of the USSR Acad. Sci., Apatity, p. 35–52 (in Russian) [Гущенко О.И. Определение тектонических полей напряжений методом кинематического анализа структур разрушения в связи с прогнозом сейсмической опасности // Природа и методология определения тектонических напря¬жений в верхней части земной коры / Ред. М.А. Садовский. Апатиты: Кольский филиал АН СССР, 1987. С. 35–52].
7. Gushchenko O.I., Kuznetsov V.A., 1979. Determination of principal stress orientations and ratios from the combinations of directions of strike-slip tectonic displacements. In: A.S. Grigoriev, D.N. Osokina (Eds.), Fields of stress and deformation in the lithosphere. Nauka, Moscow, p. 60–66 (in Russian) [Гущенко О.И., Кузнецов В.А. Определение ориентаций и соотношения величин главных напряжений по совокупности направлений сдвиговых тектонических смещений // Поля напряжений и деформаций в литосфере / Ред. А.С. Григорьев, Д.Н. Осокина. М.: Наука, 1979. С. 60–66].
8. Herrmann R.B., 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters 84 (6), 1081–1088. https://doi.org/10.1785/0220110096.
9. Kostrov B.V., 1975. Mechanics of Tectonic Earthquake Source. Nauka, Moscow, 176 p. (in Russian) [Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 176 с.].
10. Kreemer C., Holt W.E., Haines A.J., 2003. An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International 154 (1), 8–34. https://doi.org/10.1046/j.1365-246X.2003.01917.x.
11. Lee W.H.K., Lahr J.C., 1975. HYPO71: A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes. U.S. Geological Survey Open File Report 75-311. California, Menlo-Park, 113 p.
12. McClusky S., Reilinger R., Mahmoud S., Ben Sari D., Tealeb A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International 155 (1), 126–138. https://doi.org/10.1046/j.1365-246X.2003.02023.x.
13. Rebetsky Yu.L., 1996. I. Stress-monitoring: Issues of reconstruction methods of tectonic stresses and seismotectonic deformations. Journal of Earthquake Prediction Research 5 (4), 557–573.
14. Rebetsky Yu.L., 1997. Reconstruction of tectonic stresses and seismotectonic strains: Methodical fundamentals, current stress field of Southeastern Asia and Oceania. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 354 (4), 560–563.
15. Rebetsky Yu.L., 2003. The Stress-Strain State and Mechanical Properties of Natural Massifs from Earthquake Focal Mechanism Data and Structural-Kinematic Characteristics of Fractures. PhD Thesis (Doctor of Physics and Mathematics). United Institute of Physics of the Earth of RAS, Moscow, 455 p. (in Russian) [Ребецкий Ю.Л. Напряженно-деформированное состояние и механические свойства природных массивов по данным о механизмах очагов землетрясений и структурно-кинематическим характеристикам трещин: Дис. … докт. физ.-мат. наук. М.: ОИФЗ РАН, 2003. 455 с.].
16. Seismic studies in the regional and sub-regional scale for the Block 2 site of the Bushehr Nuclear Power Plant, 2001. Report. Institute of Physics of the Earth of RAS, Moscow, Vol. 2, 179 p. (in Russian) [Проведение сейсмологических работ в региональном и субрегиональном масштабах для площадки блока 2 АЭС «Бушер». Отчет. M.: ИФЗ РАН, 2001. Т. 2. 179 с.].
17. Sokos E.N., Zahradník J., 2008. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences 34 (8), 967–977. https://doi.org/10.1016/j.cageo.2007.07.005.
18. Sokos E.N., Zahradník J., 2013. Evaluating centroid‐moment‐tensor uncertainty in the new version of ISOLA software. Seismological Research Letters 84 (4), 656–665. https://doi.org/10.1785/0220130002.
19. Stauder W., Udías A., 1963. S-wave studies of earthquakes of the North Pacific, Part II: Aleutian Islands. Bulletin of the Seismological Society of America 53 (1), 59–77.
20. Udias A., 1964. A least squares method for earthquake mechanism determination using S-wave data. Bulletin of the Seismological Society of America 54 (6A), 2037–2047.
21. Vernant P., Nilforoushan F., Hatzfeld D., Abbassi M.R., Vigny C., Masson F., Nankali H., Martinod J., Ashtiani A., Bayer R., Tavakoli F., Chéry J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and Northern Oman. Geophysical Journal International 157 (1), 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x.
22. Vvedenskaya A.V., 1969. Investigation of Stresses and Ruptures in Earthquake Foci by the Theory of Dislocations. Nauka, Moscow, 136 p. (in Russian) [Введенская А.В. Исследование напряжений и разрывов в очагах землетрясений при помощи теории дислокаций. М.: Наука, 1969. 136 с.].
23. Yunga S.L., 1977. On the definition of earthquake mechanism from arrivals of longitudinal and transverse seismic waves. Doklady AN SSSR 233 (6), 1076–1078 (in Russian) [Юнга С.Л. Об определении механизма землетрясения по вступлениям продольных и поперечных сейсмических волн // Доклады АН СССР. 1977. Т. 233. № 6. С. 1076–1078].
Review
For citations:
Rebetsky Yu.L., Lukk A.A., Tatevossian R.E., Bykova V.V. DETERMINATION OF WEAK EARTHQUAKE FOCAL MECHANISMS AND MODERN GEODYNAMICS OF SOUTHERN IRAN. Geodynamics & Tectonophysics. 2017;8(4):971-988. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0327