ROLE OF THE STRUCTURAL FACTOR IN THE DISTRIBUTION OF HIGH-RADON GROUNDWATER IN THE SOUTHWESTERN FLANK OF THE SOUTH BAIKAL RIFT BASIN
https://doi.org/10.5800/GT-2017-8-4-0326
Abstract
This article discusses the distribution patterns of high-radon groundwater at the southwestern shore of LakeBaikal. This region is a flank of the South Baikalrift basin, characterized by high geodynamic activity and complex fault patterns, without any special geochemical conditions with regard to the content of uranium in the rocks. Based on our observations and measurements, we consolidated the first massive database on radon volume activity (Q) in a variety of local water sources. In the Kultuk–Vydrino area, the Q values vary from zero to 81.1 Bq/l, according to the analysis of the water samples from 93 springs, lakes, small streams, wells, and drilled holes. The highest concentrations of radon are discovered in the groundwater samples. Such values are unevenly scattered across the study area. The chain of the maximum Q values trends northwestwards along the LakeBaikalshore. This distribution pattern of radon, as well as the locations of individual water sources with Q>15 Bq/l are predetermined by the structural factor. The paragenetic analysis of faults and joints in the Kultuk–Vydrino area shows that this factor includes both the structure and stages in the development of the regional largest Main Sayan fault zone (the southwestern flank of the South Baikalbasin is a segment of this zone). The water sources with increased concentrations of radon are located in zones with a high density of the 2nd order faults, especially on sites wherein the NW-striking faults cross the transverse faults that have experienced repeated activation. Temperature T is an additional factor influencing the degree of radioactivity in water. A relationship between T and Q is reverse. Water sources with Q>15 Bq/l associated with the 2nd order fault zones may occur also due to a locally lower temperature of groundwater. Our study gives evidence that the southwestern coast ofLake Baikal is promising for finding high-radon water sources. Using such water in balneology can become a valuable contribution to the tourism and recreational potential of the region. This prospect is especially important for the town ofBaikalsk that is now developing without its township-forming enterprise: the notorious pulp-and-paper mill has been completely shut down.
About the Authors
K. Zh. SeminskyRussian Federation
Seminsky, Konstantin Zh., Doctor of Geology and Mineralogy, Deputy Director
128 Lermontov street, Irkutsk 664033, Russia
Yu. P. Burzunova
Russian Federation
Burzunova, Yulia P., Candidate of Geology and Mineralogy, Lead Engineer
128 Lermontov street, Irkutsk 664033, Russia
A. K. Seminsky
Russian Federation
Seminsky Alexander K., Postgraduate Student
128 Lermontov street, Irkutsk 664033, Russia
A. A. Bobrov
Russian Federation
Bobrov, Alexander A., Candidate of Geology and Mineralogy, Researcher
128 Lermontov street, Irkutsk 664033, Russia
References
1. Agarwal M., Gupta S.K., Deshpande R.D., Yadava M.G., 2006. Helium, radon and radiocarbon studies on a regional aquifer system of the North Gujarat–Cambay region, India. Chemical Geology 228 (4), 209–232. https://doi.org/10.1016/j.chemgeo.2005.10.007.
2. Aleksandrov V.K., Taskin A.P., 1990. Regional strike-slip faults in East Siberia, and the dynamics of their formation. Geotektonika (Geotectonics) (3), 50–58 (in Russian) [Александров В.К., Таскин А.П. Региональные сдвиги Восточной Сибири и динамика их формирования // Геотектоника. 1990. № 3. С. 50–58].
3. Baikal Branch of the Geophysical Survey, 2017. The main catalogue of events. Available from: http://seis-bykl.ru (last accessed February 10, 2016) (in Russian) [Байкальский филиал геофизической службы. Основной каталог событий. Режим доступа: http://seis-bykl.ru (дата обращения: 10.02.2017)].
4. Balla Z., Kuzmin M., Levi K., 1991. Kinematics of the Baical opening: results of modeling. Annales Tectonicae 5 (1), 18–31.
5. Berzin N.A., 1967. Zone of the Main Fault in the Eastern Sayan. Nauka, Moscow, 147 p. (in Russian) [Берзин Н.А. Зона Главного разлома Восточного Саяна. М.: Наука, 1967. 147 с.].
6. CAMERA-01 Measuring Equipment Set for Radon Monitoring, 2003. Manual. NITON, Moscow, 24 p. (in Russian) [Комплекс измерительный для мониторинга радона «КАМЕРА-01». Руководство по эксплуатации. М.: НИТОН, 2003. 24 с.].
7. Erdogan M., Eren N., Demirel S., Zedef V., 2013. Determination of radon concentration levels in wellwater in Konya, Turkey. Radiation Protection Dosimetry 156 (4), 489–494. https://doi.org/10.1093/rpd/nct099.
8. Golenetsky S.I., Misharina L.A., 1978. Seismicity and earthquake focal mechanisms in the Baikal rift zone. Tectonophy¬sics 45 (1), 71–85. https://doi.org/10.1016/0040-1951(78)90225-1.
9. Guerra M., Etiope G., 1999. Effects of gas-water partitioning, stripping and channelling processes on radon and helium gas distribution in fault areas. Geochemical Journal 33 (3), 141–151. https://doi.org/10.2343/geochemj.33.141.
10. Lamakin V.V., 1968. Neotectonics of the Baikal Basin. Nauka, Moscow, 247 p. (in Russian) [Ламакин В.В. Неотектоника Байкальской впадины. М.: Наука, 1968. 247 с.].
11. Levi K.G., Zadonina N.V., Yazev S.A., Voronin V.I., 2012. Modern Geodynamics and Heliogeodynamics. Publishing House of the Irkutsk State University, Irkutsk, 539 p. (in Russian) [Леви К.Г., Задонина Н.В., Язев С.А., Воронин В.И. Современная геодинамика и гелиогеодинамика. Иркутск: Изд-во ИГУ, 2012. 539 с.].
12. Levi K.G., Arzhannikova A.V., Buddo V.Yu., Kirillov P.G., Lukhnev A.V., Miroshnichenko A.I., Ruzhich V.V., Sankov V.A., 1997. Modern geodynamics of the Baikal rift. Razvedka i Okhrana Nedr (Prospect and Protection of Mineral Resources) (1), 10–20 (in Russian) [Леви К.Г., Аржанникова А.В., Буддо В.Ю., Кириллов П.Г., Лухнев А.В., Мирошниченко А.И., Ружич В.В., Саньков В.А. Современная геодинамика Байкальского рифта // Разведка и охрана недр. 1997. № 1. С. 10–20].
13. Logachev N.A., 2003. History and geodynamics of the Baikal rift. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (5), 391–406.
14. Logachev N.A., Florensov N.A., 1977. Baikal system of rift valleys. In: N.A. Florensov (Ed.), Role of rifting in the geological history of the Earth. Nauka, Novosibirsk, p. 19–29 (in Russian) [Логачев Н.А., Флоренсов Н.А. Байкальская система рифтовых долин // Роль рифтогенеза в геологической истории Земли / Ред. Н.А. Флоренсов. Новосибирск: Наука, 1977. С. 19–29].
15. Lomonosov I.S., Kustov Yu.I., Pinneker E.V., 1977. Mineral Waters of Pribaikalie. East Siberian Publishing House, Irkutsk, 224 p. (in Russian) [Ломоносов И.С., Кустов Ю.И., Пиннекер Е.В. Минеральные воды Прибайкалья. Иркутск: Вост.-Сиб. кн. изд-во, 1977. 224 с.].
16. Malakootian M., Khashi Z., Iranmanesh F., Rahimi M., 2014. Radon concentration in drinking water in villages nearby Rafsanjan fault and evaluation the annual effective dose. Journal of Radioanalytical and Nuclear Chemistry 302 (3), 1167–1176. https://doi.org/10.1007/s10967-014-3345-1.
17. Melnikova V.I., Radziminovich N.A., 1998. Mechanisms of action of earthquake foci in the Baikal region over the period 1991–1996. Geologiya i Geofizika (Russian Geology and Geophysics) 39 (11), 1598–1607.
18. Myasnikov A.A., Samovich D.A., Kokarev A.A., Gavrilov L.P., 2009. Uranium-bearing capacity and radiation-ecological situation in the southern regions of East Siberia. In: Radioactivity and Radioactive Elements in Human Environment. Proceedings of the 3rd International Conference (June 23–27, 2009, Tomsk). STT, Tomsk, p. 398–403 (in Russian) [Мясников А.А., Самович Д.А., Кокарев А.А., Гаврилов Л.П. Ураноносность и радиационно-эколо¬гическая обстановка территории юга Восточной Сибири // Радиоактивность и радиоактивные элементы в среде обитания человека: Материалы III Международной конференции (23–27 июня 2009 г., г. Томск). Томск: STT, 2009. С. 398–403].
19. Radziminovich N.A., 2010. Focal depths of earthquakes in the Baikal region: a review. Izvestiya, Physics of the Solid Earth 46 (3), 216–229. https://doi.org/10.1134/S1069351310030043.
20. San’kov V.A., Chipizubov A.V., Lukhnev A.V., Smekalin O.P., Miroshnichenko A.I., Calais E., Déverchère J., 2004. Assessment of a large earthquake risk in the zone of Main Sayan fault using GPS geodesy and paleoseismology. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (11), 1369–1376.
21. Schubert M., Paschke A., Lieberman E., Burnett W.C., 2012. Air-Water partitioning of 222Rn and its dependence on water temperature and salinity. Environmental Science & Technology 46 (7), 3905–3911. https://doi.org/10.1021/es204680n.
22. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO Branch, Publi¬shing House of SB RAS, Novosibirsk, 243 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. 243 с.].
23. Seminsky K.Zh., 2009. Major factors of the evolution of basins and faults in the Baikal rift zone: Tectonophysical ana¬lysis. Geotectonics 43 (6), 486–500. https://doi.org/10.1134/S001685210906003X.
24. Seminsky K.Zh., 2012. Internal structure of fault zones: spatial and temporal evolution studies on clay models. Geodynamics & Tectonophysics 3 (3), 183–194. https://doi.org/10.5800/GT-2012-3-3-0070.
25. Seminsky K.Zh., 2014. Specialized mapping of crustal fault zones. Part 1: Basic theoretical concepts and principles. Geodynamics & Tectonophysics 5 (2), 445–467 (in Russian) [Семинский К.Ж. Спецкартирование разломных зон земной коры. Статья 1: Теоретические основы и принципы // Геодинамика и тектонофизика. 2014. Т. 5. № 2. С. 445–467]. https://doi.org/10.5800/GT-2014-5-2-0136.
26. Seminsky K.Zh., 2015. Specialized mapping of crustal fault zones. Part 2: Main stages and prospects. Geodynamics & Tectonophysics 6 (1), 1–43 (in Russian) [Семинский К.Ж. Спецкартирование разломных зон земной коры. Статья 2: Основные этапы и перспективы // Геодинамика и тектонофизика. 2015. Т. 6. № 1. С. 1–43]. https://doi.org/10.5800/GT-2015-6-1-0170.
27. Seminsky K.Zh., Seminsky A.K., 2016. Radon in groundwaters in the Baikal region and Transbaikalia: variations in space and time. Geodynamics & Tectonophysics 7 (3), 477–493 (in Russian) [Семинский К.Ж., Семинский А.К. Радон в подземных водах Прибайкалья и Забайкалья: пространственно-временные вариации // Геодинамика и тектонофизика. 2016. Т. 7. № 3. С. 477–493]. https://doi.org/10.5800/GT-2016-7-3-0218.
28. Seminsky K.Zh., Seminsky Zh.V., 2016. Special Mapping of the Crustal Fault Zones, and Its Possibilities in Studying the Structural Control of Kimberlites in the Alakit-Markha Field, Yakutian Diamond Province. Publishing house of the Irkutsk State Technical University, Irkutsk, 204 p. (in Russian) [Семинский К.Ж., Семинский Ж.В. Спецкартирование разломных зон земной коры и его возможности в исследовании структурного контроля кимберлитов в Алакит-Мархинском поле Якутской алмазоносной провинции. Иркутск: Изд-во ИРНИТУ, 2016. 204 с.].
29. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Nauka, Novosibirsk, 112 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 112 с.].
30. Sherman S.I., Dem’yanovich V.M., Lysak S.V., 2004. Active faults, seismicity and fracturing in the lithosphere of the Baikal rift system. Tectonophysics 380 (3–4), 261–272. https://doi.org/10.1016/j.tecto.2003.09.023.
31. Sherman S.I., Dneprovsky Yu.I., 1989. Stress Fields of the Earth's Crust and Geological and Structural Methods of Their Study. Siberian Branch, Nauka, Novosibirsk, 158 p. (in Russian) [Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого-структурные методы их изучения. Новосибирск: Наука. СО, 1989. 158 с.].
32. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Siberian Branch, Novosibirsk, 261 p. (in Russian) [Шер-ман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. СО, 1991. 261 с.].
33. Sim L.A., 1991. The study of tectonic stresses from geological indicators (methods, results, and recommendations). Izvestia vuzov. Geologiya i Razvedka (Geology and Exploration) (10), 3–22 (in Russian) [Сим Л.А. Изучение тектонических напряжений по геологическим индикаторам (методы, результаты, рекомендации) // Известия вузов. Геология и разведка. 1991. № 10. С. 3–22].
34. Soloviev S.L., Kovochev S.A., Misharina L.A., Ufimtsev G.F., 1989. Seismicity of transverse faults in the Olkhon – Svyatoy Nos zone of Lake Baikal. Doklady AN SSSR 309 (1), 61–64 (in Russian) [Соловьев С.Л., Ковочев С.А., Мишарина Л.А., Уфимцев Г.Ф. Сейсмичность поперечных нарушений в Ольхон-Святоносской зоне оз. Байкал // Доклады АН СССР. 1989. Т. 309. № 1. С. 61–64].
35. Steinitz G., Vulkan U., Lang B., Gilat A., Zafrir H., 1992. Radon emanation along border faults of the rift in the Dead Sea area. Israel Journal of Earth Sciences 41 (1), 9–20.
36. Suvorov A.I. (Ed.), 1977. Faults and Horizontal Movements in the Mountain Structures of the USSR. Nauka, Moscow, 136 p. (in Russian) [Разломы и горизонтальные движения горных сооружений СССР / Ред. А.И. Суворов. М.: Наука, 1977. 136 с.].
37. Vlasov O.N., Tkachuk V.G., Tolstikhin N.I. (Eds.), 1962. Mineral Waters in the Southern Regions of East Siberia. Pub¬lishing House of the USSR Acad. Sci., Moscow, Leningrad, vol. 2, 220 p. (in Russian) [Минеральные воды южной части Восточной Сибири / Ред. Н.А. Власов, В.Г. Ткачук, Н.И. Толстихин. М.–Л.: Изд-во АН СССР, 1962. Т. 2. 220 с.].
Review
For citations:
Seminsky K.Zh., Burzunova Yu.P., Seminsky A.K., Bobrov A.A. ROLE OF THE STRUCTURAL FACTOR IN THE DISTRIBUTION OF HIGH-RADON GROUNDWATER IN THE SOUTHWESTERN FLANK OF THE SOUTH BAIKAL RIFT BASIN. Geodynamics & Tectonophysics. 2017;8(4):949–969. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0326