Preview

Geodynamics & Tectonophysics

Advanced search

SPECIALIZED MAPPING OF CRUSTAL FAULT ZONES. PART 1: BASIC THEORETICAL CONCEPTS AND PRINCIPLES

https://doi.org/10.5800/GT-2014-5-2-0136

Abstract

Long-term studies of shear zones have included collection of data on fractures showing no indication of displacement which are termed as 'blank' fractures. A method aimed at mapping fault structures and stress fields has been developed on the basis of results of paragenetic analysis of measurements of abundant fractures. The method is termed as 'specialized mapping', firstly, due to its specific structural goal so that to distinguish it from the conventional geological mapping of regions in nature, and, secondly, because of the specific procedure applied to refer to fractures as references to decipher fault-block patterns of natural regions. In Part 1, basic theoretical concepts and principles of specialized mapping are described. Part 2 is being prepared for publication in one of the next issues of the journal; it will cover stages of the proposed method and describe some of the cases of its application.

In terms of general organizational principles, specialized mapping is similar to other methods based on structural paragenetic analysis and differs from such methods in types of paragenesises viewed as references to reveal crustal fault zones. Such paragenesises result from stage-by-stage faulting (Fig 2 and Fig. 7) during which stress fields of the 2nd order are regularly changeable within the shear zone. According to combined experimental and natural data, a complete paragenesis of fractures in the shear zone includes a major (1st order) fault plane and fractures of other seven types, R, R’, n, n’, t, t’ and T (2nd order) (Fig. 4 and Fig 8). At the fracture level, each of them corresponds to a paragenesis including three nearly perpendicular systems of early ruptures (Fig. 1), which are based on two classical patterns of conjugated fractures, one of which is consistent with the position of the fault plane (Fig. 3). Taking into account that strike-slip, reverse and normal faults are similar in terms of mechanics (i.e. they are formed due to shearing), standard patterns of fractures systems for their impact zones are members of the above described paragenesis of faults and fractures, which is spatially oriented in such a way that its position and displacements along Y-shears are correspondent to the right- or left-lateral strike-slip faults and also to normal and reverse faults with different dip angles. Under this approach, it has become possible to construct standard circle diagrams / patterns, each containing a complete set of fracture systems of one of the main types of fault zones (Fig. 6). In the process of specialized mapping, the patterns are compared with diagrams based on mass crustal fracture measurements taken on sites in the regions of studies. This procedure yields local solutions showing a presence of fault zones of specific types and spatial orientations; such solutions are shown as points at the corresponding sites on the schematic map of the territory under study, and points with similar paragenesises are then connected by lines so that to outline the boundaries of the revealed fault zones.

Besides construction of a schematic map of a fault structures, specialized mapping provides for identification of stress fields wherein elements of such a fault structure has formed or activated at some stages. With this goal, the identified fault zones are classified by ranks. At the first phase of such analysis, types and orientations of all the initial local solutions are compared with types and orientation of the members of the ‘ideal’ paragenesis of the 2nd order, which corresponds to a strike-slip, reverse (thrust) or normal fault (Fig. 8). This procedure reveals solutions showing the presence of fault zones varying in types and classified in the higher rank, which correspond to the regional stress field known form the history of the region under study. Such regional solutions are used as a basis for further iterations with reference to ‘ideal’ fault paragenesises, until possibilities to classify the fault zones into the fault networks of some specific types are exhausted. A few (typically, three to four) remaining solutions, showing orientations of the fault zone and the dynamic setting of its formation, are indicative of the lowest (regional or geostructural) level of the process of destruction in the region under study. Their simultaneous development is impossible, and therefore they correspond to different stages of faulting in the territory under study. Indirect (statistical) indicators of frequencies and angle ratios of fault systems and direct (apriory) information are used to determine ages and to reveal evolutional stages in time. At a final stage of specialized mapping, a reversed procedure provides for construction of schematic maps of fault zones for every main stage of formation of the structure under study. With this goal, faults that occurred or activated in a specified stress field are distinguished from the fault network.

In addition to the paragenesis principle applied to reveal fault zones and the evolution-in-time principle used to reveal stages of structure formation, the method of specialized mapping employs statistical methods of data collection and processing, and its application is consistent and computerized through all the work stages. It provides for solution of problems dealing with ‘blank’ fracturing with account of seemingly chaotic fracture patterns, local initial observations, uncertainties of age relations, impacts of structural and material inhomogeneities, and long timelines of statistical data collection and processing. In view of the above, specialized mapping can be proposed as one of the most efficient methods of studying the fault structure of the Earth’s crust.

Part 2 will describe cases of application of the proposed method to map fault zones and to identify fault types and stress fields varying in ages in the regions of faulting, including areas wherein rocks are poorly outcropped. The main results of application of the proposed method of specialized mapping is schematic maps of fault zones, showing the fault zones that were active at various stages of formation of the structure under study. Such maps can be used as a basis for finding solutions to the main problems of endo- and exogeodynamics as well as for assurance of structural control over mineral deposits associated with faulting.

 

About the Author

K. Zh. Seminsky 
Institute of the Earth’s Crust, SB RAS, Irkutsk, Russia 
Russian Federation

Doctor of Geology and Mineralogy, Head of Laboratory of Tectonophysics 
Institute of the Earth’s Crust, Siberian Branch of RAS 
128 Lermontov street, Irkutsk 664033, Russia 
Tel.: 8(3952)423027



References

1. Agosta F., Alessandroni M., Antonellini M., Tondi E., Giorgioni M., 2010. From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490 (3-4), 197-213. http://dx.doi.org/10.10167j.tecto. 2010.05.005.

2. Anderson E.M., 1951. The Dynamics of Faulting. Edinburg, 206 p.

3. Angelier J., 1989. From orientation to magnitudes in paleostress determination using fault slip data. Journal of Structural Geology 11 (1-2), 37-50. http://dx.doi.org/10.1016/0191-8141(89)90034-5.

4. Belousov V.V., 1985. Foundations of Structural Geology. Nedra, Moscow, 207 p. (in Russian) [Белоусов В.В. Основы структурной геологии. М.: Недра, 1985. 207 с.].

5. Billi A., Salvini F., Storti F., 2003.The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology 25 (11), 1779-1794. http://dx.doi.org/10.1016/S0191-8141(03) 00037-3.

6. Bondarenko P.M., 1976. Modeling of Thrust Faults in Folded Areas (Case of Aktash Structures of Gorny Altai). Nauka, No¬vosibirsk, 123 p. (in Russian) [Бондаренко П.М. Моделирование надвиговых дислокаций в складчатых областях (на примере Акташских структур горного Алтая). Новосибирск: Наука, 1976. 123 с.].

7. Burtman V.S., Luk'yanov A.V., Peive A.V., et al., 1963. Horizontal displacement along faults and some methods of their stu¬dies. In: Faults and horizontal crustal movements. Publishing House of the USSR Acad. Sci., Moscow, p. 5-33 (in Rus¬sian) [Буртман В.С., Лукьянов А.В., Пейве А.В. и др. Горизонтальные перемещения по разломам и некоторые методы их изучения // Разломы и горизонтальные движения земной коры. М.: Изд-во АН СССР, 1963. С. 5-33].

8. Burzunova Yu.P., 2011. Angles between conjugated systems of near-fault fractures in idealized and natural paragenesises formed in various dynamic settings. Litosfera (2), 94-110 (in Russian) [Бурзунова Ю.П. Углы между сопряженными системами приразломных трещин в идеализированных и природных парагенезисах, формирующихся в различных динамических обстановках // Литосфера. 2011. № 2. С. 94-110].

9. Caine J.S., Bruhn R.L., Forster C.B., 2010. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. Journal of Structural Geology 32 (11), 1576-1589. http://dx.doi.org/10.1016/j.jsg.2010.03.004.

10. Cassas S.A.M., Gil P.I., Simon G.J.L., 1990. Los metods de analisis de paleoesfuerzos a partir de poblaciones de fallas: sistematica y tecnicas de aplicacion. Estudios Geologicos 46 (5-6), 385-398.

11. Cello G., Gambini R., Mazzoli S., Read A., Tondi E., Zucconi V., 2000. Fault zone characteristics and scaling properties of the Val d'Agri Fault System (Southern Apennines, Italy). Journal of Geodynamics 29 (3-5), 293-307. http://dx.doi.org/ 10.1016/S0264-3707(99)00043-5.

12. Chernyshev S.N., 1983. Rock Fractures. Nauka, Moscow, 240 p. (in Russian) [Чернышев С.Н. Трещины горных пород. М.: Наука, 1983. 240 с.].

13. Danilovich V.N., 1961. The Method of Belts in Studies of Fracturing Related to Fault Displacements. IPI, Irkutsk, 47 p. (in Russian) [Данилович В.Н. Метод поясов в исследовании трещиноватости, связанной с разрывными смещениями. Иркутск: ИПИ, 1961. 47 с.].

14. Friedman M., Stearns D.W., 1971. Relations between stresses inferred from calcite twin lamellae and macrofractures, Teton Anticline, Montana. Geological Society of America Bulletin 82 (11), 3151-3162. http://dx.doi.org/10.1130/0016-7606 (1971)82.

15. Gephart J.W., 1990. Stress and the direction of slip on fault planes. Tectonics 9, 845-858. http://dx.doi.org/10.1029/ TC009i004p00845.

16. Gibbs A.D., 1990. Linked fault families in basin formation. Journal of Structural Geology 12 (5-6), 795-803. http://dx.doi. org/10.1016/0191-8141(90)90090-L.

17. Gintov О.B., Isai У.М., 1988. Tectonophysical Studies of Faults in Consolidated Crust. Naukova Dumka, Kiev, 228 p. (in Russian) [Гинтов О.Б., Исай В.М. Тектонофизические исследования разломов консолидированной коры. Киев: Наукова думка, 1988. 228 с.].

18. Guerriero V., Iannace A., Mazzoli S., Parente M., Vitale S., Giorgioni M., 2010. Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks. Journal of Structural Geology 32 (9), 1271-1278. http://dx.doi.org/10.1016/j.jsg.2009.04.016.

19. Guiraud M., Laborde O., Philip H., 1989. Characterization of various types of deformation and their corresponding devia- toric stress tensors using microfault analysis. Tectonophysics 170 (3-4), 289-316. http://dx.doi.org/10.1016/0040-1951 (89)90277-1.

20. Gushchenko О.1., 1979. The method of kinematic analysis of destruction structures in reconstruction of tectonic stress fields. In: Stress fields and defortmations in the lithosphere. Nauka, Moscow, p. 7-35 (in Russian) [Гущенко О.И. Метод кинематического анализа структур разрушения при реконструкции полей тектонических напряжений // Поля напряжений и деформаций в литосфере. М.: Наука, 1979. С. 7-35].

21. Gzovsky M.V., 1963. Main Issues of Tectonophysics and Tectonics of the Baidzhansai Anticlinorium. Parts 3 and 4. Publi¬shing House of the USSR Acad. Sci., Moscow, 544 p. (in Russian) [Гзовский М.В. Основные вопросы тектонофизики и тектоника Байджансайского антиклинория. Ч. 3, 4. М.: Изд-во АН СССР, 1963. 544 с.].

22. Hancock P.L., 1985. Brittle microtectonics: Principles and practice. Journal of Structural Geology 7 (3-4), 437-457. http:// dx.doi.org/10.1016/0191-8141(85)90048-3.

23. Harding T.P., 1974. Petroleum traps associated with wrench faults. American Association of Petroleum Geologists Bulletin 58 (7), 1290-1304.

24. Kearey P. (Ed.), 1993. The Encyclopedia of the Solid Earth Sciences. Backwell Sci. Pub., Oxford, 713 p.

25. Knorring L.D., 1969. Mathematical Methods in Studies of Tectonic Fracturing Mechanism. Nedra, Leningrad, 87 p. (in Rus¬sian) [Кнорринг Л.Д. Математические методы при изучении механизма образования тектонической трещиноватости. Л.: Недра, 1969. 87 с.].

26. Kopp МХ., 1997. Structure of Lateral Extrusion in the Alpine-Himalayan Collisional Belt. Nauchny Mir, Moscow, 314 p. (in Russian) [Копп М.Л. Структуры латерального выжимания в Альпийско-Гималайском коллизионном поясе. М.: Научный мир, 1997. 314 с.].

27. Kumpan А.S. (Ed.), 1978. Geological Survey Manual, Scale 1: 50,000. V. 1.. Nedra, Leningrad, 128 p. (in Russian) [Методическое руководство по геологической съемке масштаба 1:50000. Т. 1 / Под ред. А.С. Кумпана. Л.: Недра, 1978. 128 с.].

28. Luk'yanov А.У., 1965. Structural Manifestation of Horizontal Crustal Movements. Nauka, Moscow, 210 p. (in Russian) [Лукьянов А.В. Структурные проявления горизонтальных движений земной коры. М.: Наука, 1965. 210 с.].

29. Luk'yanov А.У., 1991. Plastic Deformations and Tectonic Flow in the Lithosphere. Nauka, Moscow, 144 p. (in Russian) [Лукьянов А.В. Пластические деформации и тектоническое течение в литосфере. М.: Наука, 1991. 144 с.].

30. Mandl G., 1988. Mechanics of tectonic faulting: Models and basic concepts. Elsevier, Amsterdam, 407 p.

31. McClay K.R. (Ed.), 1991. Thrust Tectonics. Chapman and Hall, London, 444 p.

32. Mikhailov А.Е., 1984. Structural Geology and Geological Mapping. Nedra, Moscow, 464 p. (in Russian) [Михайлов А.Е. Структурная геология и геологическое картирование. М.: Недра, 1984. 464 с.].

33. Nicolas A. 1987. Principles of Rock Deformation. Springer, 208 p.

34. Nikolaev P.N., 1992. The Method of Tectonodynamic Analysis. Nedra, Moscow, 295 p. (in Russian) [Николаев П.Н. Методика тектонодинамического анализа. М.: Недра, 1992. 295 с.].

35. Parfenov V.D., 1984. About the method of tectonophysical analysis of geological structures. Geotektonika (1), 60-72 (in Russian) [Парфенов В.Д. К методике тектонофизического анализа геологических структур // Геотектоника. 1984. № 1. С. 60-72].

36. Park R.G., 1997. Foundations of structural geology. Chapman & Hall, London, 202 p.

37. Ramsay J.C., ^ber M.J., 1987. The Techniques of Modern Structural Geology. Academ. Pres. Incorp., London, 1 (2), 700 p.

38. Rastsvetaev L.M., 1987. The paragenetic method of structural analysis of tectonic faults. In: Problems of Structural Geology and Physics of Tectonic Processes. Part 2. GIN, USSR Acad. Sci., Moscow, p. 173-235 (in Russian) [Расцветаев Л.М. Парагенетический метод структурного анализа дизъюнктивных тектонических нарушений // Проблемы структурной геологии и физики тектонических процессов. Ч. 2. М.: ГИН АН СССР, 1987. С. 173-235].

39. Ratz М.У., Chernyshev S.N., 1970. Fracturing and Properties of Fractured Rocks. Nedra, Moscow, 164 p. (in Russian) [Рац М.В., Чернышев С.Н. Трещиноватость и свойства трещиноватых горных пород. М.: Недра, 1970. 164 с.].

40. Rebetsky Yu.L., 2007. Tectonic Stresses and Strength of Natural Rock Massives. Akademkniga, Moscow, 406 p. (in Russian) [Ребецкий Ю.Л. Тектонические напряжения и прочность природных горных массивов. М.: ИКЦ «Академкнига», 2007. 406 с.].

41. Reches Z., 1978. Analysis of faulting in three-dimentional strain field. Tectonophysics 47 (1-2), 109-129. http://dx.doi.org/ 10.1016/0040-1951(78)90154-3.

42. Reches Z, 1987. Determination of the tectonic stress tensor from slip along faults that obey the Coulomb field criterion. Tec¬tonics 6 (6), 849-861. http://dx.doi.org/10.1029/TC006i006p00849.

43. Rodygain A.M., 1991. Indicators of Displacement Directions due to Shear Deformation. Publishing House of Tomsk University, Tomsk, 99 p. (in Russian) [Родыгин A.M. Признаки направления смещения при деформации сдвига. Томск: Изд-во Томск. ун-та, 1991. 99 с.].

44. Ruzhich V.V., 1997. Seismotectonic Destruction of the Crust in the Baikal Rift Zone. Nauka, Novosibirsk, 145 p. (in Russian) [Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск: Наука, 1997. 145 с.].

45. Schulz S.E., Evans J.P., 2000. Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geo¬physical structure of active strike-slip faults. Journal of Structural Geology 22 (7), 913-930. http://dx.doi.org/10.1016/ S0191-8141(00)00019-5.

46. Seminskii K.Zh., 1997. Angle relationships between conjugate joint systems near strike-slip, normal, and thrust fault planes. Doklady Earth Sciences 354 (4), 531-533.

47. Seminsky K.Zh., 1994. Principles and stages of specialized mapping of the fault-block structure based on studies of fracturing. Geologiya i Geofizika (Russian Geology and Geophysics) (9), 112-130 (in Russian) [Семинский К.Ж. Принципы и этапы спецкартирования разломно-блоковой структуры на основе изучения трещиноватости // Геология и геофизика. 1994. № 9. С. 112-130].

48. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Geo Branch, Publishing House of SB RAS, Novosibirsk, 243 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. 243 с.].

49. Seminsky K.Zh., 2005. Mapping of the fault-block structure of the crust at the current level of development of Tectonophy¬sics. Geofizicheskiy Zhurnal 27 (1), 85-96 (in Russian) [Семинский К.Ж. Картирование разломно-блоковой структуры земной коры на современном этапе развития тектонофизики // Геофизический журнал. 2005. Т. 27. № 1. С. 85-96].

50. Seminsky K.Zh., Burzunova Yu.P., 2007. Interpretation of chaotic jointing near fault planes: a new approach. Russian Geo¬logy and Geophysics 48 (3), 257-266. http://dx.doi.org/10.1016Zj.rgg.2007.02.009.

51. Seminsky K.Zh., Cheremnykh A.V., 2011. Jointing patterns and stress tensors in Cenozoic sediments of the Baikal rift: devel¬opment of the structural-genetic approach. Russian Geology and Geophysics 52 (3), 353-367. http://dx.doi.org/10.1016/ j.rgg.2011.02.008.

52. Seminsky K.Zh., Gladkov A.S., Lunina O.V., Tugarina M.A., 2005. The Internal Structure of Continental Fault Zones. Application Aspect. Geo Branch, Publishing House of SB RAS, Novosibirsk, 293 p. (in Russian) [Семинский К.Ж., Гладков А.С., Лунина О.В., Тугарина М.А. Внутренняя структура континентальных разломных зон. Прикладной аспект. Новосибирск: Изд-во СО РАН, Филиал «Гео», 2005. 293 с.].

53. Sherman S.I., 1966. About a new type of maps of tectonic fracturing. Geotektonika (3), 141-143 (in Russian) [Шерман С.И. О новом типе карт тектонической трещиноватости // Геотектоника. 1966. № 3. С. 141-143].

54. Sherman S.I., 1969. Mapping of fracture displacements in ore fields with reference to changes of tectonic fracturing intensity. In: Endogenic mineralization of Pribaikalie. Nauka, Moscow, p. 152-156 (in Russian) [Шерман С.И. Картирование разрывных смещений рудных полей по изменению интенсивности тектонической трещиноватости // Эндогенное оруденение Прибайкалья. М.: Наука, 1969. С. 152-156].

55. Sherman S.I., 1977. Physical Regularities of Crustal Faulting. Nauka, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].

56. Sherman S.I., Bornyakov S-А., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modeling Results). Nauka, Novo¬sibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 110 с.].

57. Sherman S.I., Dneprovsky Yu.I., 1989. Fields of Crustal Stresses and Geological and Geophysical Methods of Their Studies. Nauka, Novosibirsk, 158 p. (in Russian) [Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого-структурные методы их изучения. Новосибирск: Наука, 1989. 158 с.].

58. Sherman S.I., Seminsky K.Zh., Bornyakov S.А. et al., 1991. Faulting in the Lithosphere. Strike-Slip Zones. Nauka, Novosibirsk, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука, 1991. 262 с.],

59. Sherman S.I., Seminsky K.Zh., Bornyakov S.А. et al., 1992. Faulting in the Lithosphere. Extension Zones. Nauka, Novo¬sibirsk, 228 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука, 1992. 228 с.].

60. Sherman S.I., Seminsky K.Zh., Bornyakov S.А. et al., 1994. Faulting in the Lithosphere. Compression Zones. Nauka, Novo¬sibirsk, 263 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А. и др. Разломообразование в литосфере. Зоны сжатия. Новосибирск: Наука, 1994. 263 с.].

61. Sibson R.H., 1998. Brittle failure mode plots for compressional and extensional tectonic regimes. Journal of Structural Geo¬logy 20 (5), 655-660. http://dx.doi.org/10.1016/S0191-8141(98)00116-3.

62. Sim Ь.А., 1991. Studies of tectonic stresses on the basis of geological indicators (methods, results, and recommendation). Izvestia vuzov. Geologiya i Razvedka (10), 3-22 (in Russian) [Сим Л.А. Изучение тектонических напряжений по геологическим индикаторам (методы, результаты, рекомендации) // Известия вузов. Геология и разведка. 1991. № 10. С. 3-22].

63. Smekhov Е.М. (Ed.), 1969. The Method of Studies of Rock Fracturing and Oil and Gas Reservoirs in Fractures. Nedra, Leningrad, 129 p. (in Russian) [Методика изучения трещиноватости горных пород и трещинных коллекторов нефти и газа / Под ред. Е.М. Смехова. Л.: Недра, 1969. 129 с.].

64. Stoyanov S., 1977. Mechanism of Fault Zone Formation. Nedra, Moscow, 144 p. (in Russian) [Стоянов С. Механизм формирования разрывных зон. М.: Недра, 1977. 144 с.].

65. Structural Paragenesises and Their Ensembles, 1997. GEOS, Moscow, 282 p. (in Russian) [Структурные парагенезы и их ансамбли. М.: ГЕОС, 1997. 282 с.].

66. Sylvester A.G. (Ed.), 1984. Wrench Fault Tectonics. Tulsa, Oklahoma, USA, 313 p.

67. Sylvester A.G., 1988. Strike-slip faults. Geological Society of America Bulletin 100 (11), 1666-1703. http://dx.doi.org/10. 1130/0016-7606(1988)100<1666:SSF>2.3.ra;2.

68. Trifonov V.G., 1983. The Late Quaternary Tectogenesis. Nauka, Moscow, 224 p. (in Russian) [Трифонов В.Г. Позднечетвертичный тектогенез. М.: Наука, 1983. 224 с.].

69. Trifonov V.G., 1999. Neotectonics of Eurasia. Nauchny Mir, Moscow, 252 p. (in Russian) [Трифонов В.Г. Неотектоника Евразии. М.: Научный мир, 1999. 252 с.].

70. Twiss R.J., Moores E.M., 1992. Structural Geology. W.H. Freeman and Company, New York, 533 p.

71. Utkin V.P., 1980. Shear Dislocations and Methods of Their Studies. Nauka, Moscow, 144 p. (in Russian) [Уткин В.П. Сдвиговые дислокации и методика их изучения. М.: Наука, 1980. 144 с.].


Review

For citations:


Seminsky  K.Zh. SPECIALIZED MAPPING OF CRUSTAL FAULT ZONES. PART 1: BASIC THEORETICAL CONCEPTS AND PRINCIPLES. Geodynamics & Tectonophysics. 2014;5(2):445–467. (In Russ.) https://doi.org/10.5800/GT-2014-5-2-0136

Views: 1763


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)