Preview

Geodynamics & Tectonophysics

Advanced search

EFFECTS OF THE JANUARY 30, 2016, Mw=7.2 ZHUPANOVSKY EARTHQUAKE ON THE WATER LEVEL VARIATIONS IN WELLS YUZ-5 AND E-1 IN KAMCHATKA

https://doi.org/10.5800/GT-2017-8-4-0321

Abstract

This paper describes the water level variations in wells YuZ-5 and E-1 inKamchatkaduring the Zhu­panovsky earthquake that occurred on January 30, 2016 (Mw=7.2, Н=180 km). The distances from the Zhupanovsky earthquake epicenter to wells E-1 and YuZ-5 were 70 and 80 km, respectively. In well YuZ-5, the water level raised by 9.4 cm during 45 minutes after the seismic wave arrival. This effect was caused by a combination of a co-seismic rise in the water level due to the volumetric compression of the water-bearing rocks during fracturing in the earthquake source and an impulse increase in the fluid pressure near the wellbore during the seismic shocks. We estimated the amplitude of the coseismic water level increase (Dh=7.3 cm) and the strain value resulting from the volumetric compression of the water-bearing rocks, which is consistent with the estimated value of the coseismic volumetric deformation in the area of the well at the depth of 500m: D= –4.5×10–8. This estimation was based on the model of the dislocation source in the homogeneous isotropic elastic half-space with the parameters of the Zhupanovsky earthquake focal mechanism. After the earthquake, the water level dropped for three months at an amplitude of about ~40 cm. In order to estimate the radius of the well sensitivity to the pressure drop source, we used the model of water level lowering that followed the pressure drop in the aquifer at a distance to the well as a result of the improved filtration properties of the water-bearing rocks after the seismic shocks. The estimated radius of the well sensitivity, R is 450 m. For 3.5 months before the Zhupanovsky earthquake, ~20 cm increase in the water level was observed, which is anomalous in comparison with the average seasonal variations of the water level, as shown by the long-term observations. In our opinion, such a rise in the water level occurred in the process of the earthquake preparation, and can thus be viewed as its precursor. In well E-1, a sequence of water level changes manifested a hydrogeodynamic precursor: the water level dropped at an increased rate for 21 days before the earthquake, and raised at an amplitude of 3.7 cm during one month after the earthquake. The hydrogeodynamic precursor detected in real time gave grounds for forecasting a highly probable strong earthquake at a distance of up to 350 km from wells E-1 within a month. This forecast was reported to the Kamchatka Branch of the Russian Expert Council (KB REC) on January 21, 2016. The Zhupanov­sky earthquake occurred on January 30, 2016, and its magnitude, time and location correlated with the prediction. The case of this earthquake shows that the Kamchatka Branch of the Federal Research Center ‘Geophysical Survey of RAS’ has the system of water level observations and data processing, which is capable of diagnosing (close to real time and retrospectively) different types of hydrogeoseismic variations in the water level in wells in case of strong seismic events, and detecting the hydrogeodynamic precursors of strong earthquakes.

About the Authors

S. V. Boldina
Kamchatka Branch of Federal Research Center ‘Geophysical Survey of RAS
Russian Federation

Boldina, Svetlana V., Candidate of Geology and Mineralogy, Senior Researcher

9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006, Russia



G. N. Kopylova
Kamchatka Branch of Federal Research Center ‘Geophysical Survey of RAS
Russian Federation

Kopylova, Galina N., Doctor of Geology and Mineralogy, Head of Laboratory 

9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006, Russia



References

1. Besedina A., Vinogradov E., Gorbunova E., Svintsov I., 2016. Chilean earthquakes: Aquifer responses at the Russian platform. Pure and Applied Geophysics 173 (4), 1039–1050. https://doi.org/10.1007/s00024-016-1256-5.

2. Boldina S.V., Kopylova G.N., 2010. Modeling of hydrogeoseismic variations of the water level in the well. In: Problems of complex geophysical monitoring in the Far East of Russia. Proceedings of the Second scientific-technical conference (October 11–17, 2009, Petropavlovsk-Kamchatsky). GS RAS, Petropavlovsk-Kamchatsky, p. 166–170 (in Russian) [Болдина С.В., Копылова Г.Н. Моделирование гидрогеосейсмических вариаций уровня воды в скважине // Проблемы комплексного геофизического мониторинга Дальнего Востока России: Труды Второй региональной научно-технической конференции (11–17 октября 2009 г., г. Петропавловск-Камчатский). Петропавловск-Камчатский: ГС РАН, 2010. С. 166–170].

3. Boldina S.V., Kopylova G.N., 2013. Modeling of water level variations in well YuZ-5 in Kamchatka due to the earthquake of February 28, 2013, M=6.8. In: Problems of complex geophysical monitoring in the Far East of Russia. Procee¬dings of the Fourth scientific-technical conference (September 29 – October 5, 2013, Petropavlovsk-Kamchatsky). GS RAS, Obninsk, p. 435–439 (in Russian) [Болдина С.В., Копылова Г.Н. Моделирование вариаций уровня воды в скважине ЮЗ-5, Камчатка, вызванных землетрясением 28.02.2013 г., М=6.8 // Проблемы комплексного геофизического мониторинга Дальнего Востока России: Труды Четвертой научно-технической конференции (29 сентября – 5 октября 2013 г., г. Петропавловск-Камчатский). Обнинск: ГС РАН, 2013. С. 435–439].

4. Boldina S.V., Kopylova G.N., 2016. Coseismic effects of the 2013 strong Kamchatka earthquakes in well YUZ-5. Bulletin of Kamchatka Regional Association «Educational–Scientific» Center. Earth Sciences (2), 66–76 (in Russian) [Болдина С.В., Копылова Г.Н. Косейсмические эффекты сильных камчатских землетрясений 2013 г. в изменениях уровня воды в скважине ЮЗ-5 // Вестник КРАУНЦ. Серия Науки о Земле. 2016. № 2. С. 66–76].

5. Brodsky E.E., Roeloffs E., Woodcock D., Gall I., Manga M.A., 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research: Solid Earth 108 (B8), 2390. https://doi.org/10.1029/2002JB002321.

6. Chebrov V.N. (Ed.), 2014. Strong Kamchatka Earthquakes in 2013. Novaya Kniga, Petropavlovsk-Kamchatsky, 252 p. (in Russian) [Сильные камчатские землетрясения 2013 года / Ред. В.Н. Чебров. Петропавловск-Камчатский: Новая книга, 2014. 252 с.].

7. Chebrov V.N., Kugayenko Yu.A., Abubakirov I.R., Droznina S.Ya., Ivanova Ye.I., Matveyenko Ye.A., Mityushkina S.V., Oto-tyuk D.A., Pavlov V.M., Rayevskaya A.A., Saltykov V.A., Senyukov S.L., Serafimova Yu.K., Skorkina A.A., Titkov N.N., Chebrov D.V., 2016. The January 30th, 2016 earthquake with Кs=15.7, Mw=7.2, I=6 in the Zhupanovsky region (Kamchatka). Bulletin of Kamchatka Regional Association Educational–Scientific Center. Earth Sciences (1), 5–16 (in Russian) [Чебров В.Н., Кугаенко Ю.А., Абубакиров И.Р., Дрознина С.Я., Иванова Е.И., Матвеенко Е.А., Митюшкина С.В., Ототюк Д.А., Павлов В.М., Раевская А.А., Салтыков В.А., Сенюков С.Л., Серафимова Ю.К., Скоркина А.А., Титков Н.Н., Чебров Д.В. Жупановское землетрясение 30.01.2016 г. c Ks=15.7, Mw=7.2, I=6 (Камчатка) // Вестник КРАУНЦ. Серия Науки о Земле. 2016. № 1. С. 5–16].

8. Chebrov V.N., Saltykov V.A., Serafimova Y.K., 2013. Identifying the precursors of large (M≥6.0) earthquakes in Kamchatka based on data from the Kamchatka Branch of the Russian Expert Council on earthquake prediction: 1998–2011. Journal of Volcanology and Seismology 7 (1), 76–85. https://doi.org/10.1134/S074204631301003X.

9. Chia Y., Chiu J.J., Chiang Y.-H., Lee T.-P., Liu C.-W., 2008. Spatial and temporal changes of groundwater level induced by thrust faulting. Pure and Applied Geophysics 165 (1), 5–16. https://doi.org/10.1007/s00024-007-0293-5.

10. Firstov P.P., Kopylova G.N., Solomatin A.V., Serafimova Yu.K., 2016. Strong earthquake forecast near the Kamchatka pe¬ninsula. Bulletin of Kamchatka Regional Association Educational–Scientific Center. Earth Sciences (4), 106–114 (in Russian) [Фирстов П.П., Копылова Г.Н., Соломатин А.В., Серафимова Ю.К. О прогнозировании сильного землетрясения в районе полуострова Камчатка // Вестник КРАУНЦ. Серия Науки о Земле. 2016. № 4. С. 106–114].

11. Kitagawa Y., Koizumi N., Takahashi M, Matsumoto N., Sato T., 2006. Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M 9.0). Earth, Planets and Space 58 (2), 173–179. https://doi.org/10.1186/BF03353375.

12. Kocharyan G.G., Vinogradov E.A., Gorbunova E.M., Markov V.K., Markov D.V., Pernik L.M., 2011. Hydrologic response of underground reservoirs to seismic vibrations. Izvestiya, Physics of the Solid Earth 47 (12), 1071–1082. https://doi.org/10.1134/S1069351311120068.

13. Kopylova G.N., 2001. Changes in the water level in well Elizovo-1 in Kamchatka due to strong earthquakes (according to observations in 1987–1998.). Vulkanologiya i Seismologiya (Journal of Volcanology and Seismology) (2), 39–52 (in Russian) [Копылова Г.Н. Изменения уровня воды в скважине Елизовская-1, Камчатка, вызванные сильными землетрясениями (по данным наблюдений в 1987–1998 гг.) // Вулканология и сейсмология. 2001. № 2. С. 39–52].

14. Kopylova G.N., 2006. Changes in the water level in well YuZ-5 in Kamchatka due to earthquakes. Vulkanologiya i Seismologiya (Journal of Volcanology and Seismology) (6), 52–64 (in Russian) [Копылова Г.Н. Изменения уровня воды в скважине ЮЗ-5, Камчатка, вызванные землетрясениями // Вулканология и сейсмология. 2006. № 6. С. 52–64].

15. Kopylova G.N., 2013. On the probabilistic medium-term forecasting of strong earthquakes in Kamchatka and parametrization of precursors. In: Problems of complex geophysical monitoring in the Far East of Russia. Proceedings of the Fourth scientific-technical conference (September 29 – October 5, 2013, Petropavlovsk-Kamchatsky). GS RAS, Obninsk, p. 382–386 (in Russian) [Копылова Г.Н. О вероятностном среднесрочном прогнозе сильных землетрясений Камчатки и параметризации предвестников // Проблемы комплексного геофизического мониторинга Дальнего Востока России: Труды Четвертой научно-технической конференции (29 сентября – 5 октября 2013 г., г. Петропавловск-Камчатский). Обнинск: ГС РАН, 2013. С. 382–386].

16. Kopylova G.N., Boldina S.V., 2006. Estimation of the poro-elastic parameters of groundwater reservoirs (water level observations in wells YuZ-5 and E-1 in Kamchatka). Vulkanologiya i Seismologiya (Journal of Volcanology and Seismology) (2), 17–28 (in Russian) [Копылова Г.Н., Болдина С.В. Оценка пороупругих параметров резервуаров подземных вод (по данным уровнемерных наблюдений на скважинах ЮЗ-5 и Е-1, Камчатка) // Вулканология и сейсмология. 2006. № 2. С. 17–28].

17. Kopylova G.N., Boldina S.V., 2007. The response of water level in the YuZ-5 well, Kamchatka to the magnitude 9.3, Sumatra–Andaman Earthquake of December 26, 2004. Journal of Volcanology and Seismology 1 (5), 319–327. https://doi.org/10.1134/S0742046307050041.

18. Kopylova G.N., Boldina S.V., 2012a. On the mechanism of a hydrogeodynamic precursor of the Kronotsky earthquake, December 5, 1997, Mw=7.8. Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) (5), 104–114 (in Russian) [Копылова Г.Н., Болдина С.В. О механизме гидрогеодинамического предвестника Кроноцкого землетрясения 5 декабря 1997 г., Мw=7.8 // Тихоокеанская геология. 2012. № 5. С. 104–114].

19. Kopylova G.N., Boldina S.V., 2012b. On the relationships of water-level variations in the E-1 well, Kamchatka to the 2008–2009 resumption of activity on Koryakskii volcano and to large (M≥ 5) earthquakes. Journal of Volcanology and Seismology 6 (5), 316–328. https://doi.org/10.1134/S074204631205003X.

20. Kopylova G.N., Boldina S.V., 2015. Triggering effects of earthquakes on groundwaters (according to the observations in Kamchatka). In: V.V. Adushkin, G.G. Kocharyan (Eds.), Triggering effects in geosystems. Proceedings of the Third All-Russia seminar-meeting (June 16–19, 2015, Moscow). GEOS, Moscow, p. 70–78 (in Russian) [Копылова Г.Н., Болдина С.В. Триггерное воздействие землетрясений на подземные воды (по данным наблюдений на Камчатке) // Триггерные эффекты в геосистемах: Материалы третьего Всероссийского семинара-совещания (16–19 июня 2015 г., г. Москва) / Ред. В.В. Адушкин, Г.Г. Кочарян. М.: ГЕОС, 2015. С. 70–78].

21. Kopylova G.N., Boldina S.V., Smirnov A.A., Chubarova E.G., 2017. Experience in registration of variations caused by strong earthquakes in the level and physicochemical parameters of ground waters in the piezometric wells: the case of Kamchatka. Seismic Instruments 53 (4), 286–295. https://doi.org/10.3103/S0747923917040065.

22. Kopylova G.N., Boldina S.V., Smolina N.N., Sizova E.G., Kasimova V.A., 2012. Hydrogeoseismic variations in the water level in piezometric wells in Kamchatka (according to the observations in 1987–2011). In: Seismological and geophysical studies in Kamchatka. To the 50th anniversary of detailed seismological observations. Novaya Kniga, Petropavlovsk-Kamchatsky, p. 236–269 (in Russian) [Копылова Г.Н., Болдина С.В., Смолина Н.Н., Сизова Е.Г., Касимова В.А. Гидрогеосейсмические вариации уровня воды в пьезометрических скважинах Камчатки (по данным наблюдений 1987–2011 гг.) // Сейсмологические и геофизические исследования на Камчатке. К 50-летию детальных сейсмологических наблюдений. Петропавловск-Камчатский: Новая книга, 2012. С. 236–269].

23. Kopylova G.N., Sizova E.G., 2010. Trends and seasonal variations in water level in wells (in the aspect of search for hydrogeodynamic earthquake precursors) In: Problems of complex geophysical monitoring in the Far East of Russia. Proceedings of the Second scientific-technical conference (October 11–17, 2009, Petropavlovsk-Kamchatsky). GS RAS, Petropavlovsk-Kamchatsky, p. 206–210 (in Russian) [Копылова Г.Н., Сизова Е.Г. Тренды и сезонные вариации уровня воды в скважинах (в аспекте поиска гидрогеодинамических предвестников землетрясений) // Проблемы комплексного геофизического мониторинга Дальнего Востока России: Труды Второй региональной научно-технической конференции (11–17 октября 2009 г., г. Петропавловск-Камчатский). Петропавловск-Камчатский: ГС РАН, 2010. С. 206–210].

24. Kopylova G.N., Sizova E.G., 2012. On a precursor of earthquakes, manifested in water level variations in well E-1 in Kamchatka. In: Volcanism and related processes. Proceedings of the Conference dedicated to the Day of Volcano¬logists. Institute of Volcanology and Seismology, Far East Branch of RAS, Petropavlovsk-Kamchatsky, p. 116–125 (in Russian) [Копылова Г.Н., Сизова Е.Г. О предвестнике землетрясений, проявляющемся в изменениях уровня воды в скважине Е-1, Камчатка // Вулканизм и связанные с ним процессы: Материалы конференции, посвященной Дню вулканолога. Петропавловск-Камчатский: ИВиС ДВО РАН, 2012. С. 116–125].

25. Kopylova G.N., Steblov G.M., Boldina S.V., Sdel’nikova I.A., 2010. The possibility of estimating the coseismic deformation from water level observations in wells. Izvestiya, Physics of the Solid Earth 46 (1), 47–56. https://doi.org/10.1134/S1069351310010040.

26. Kovalevsky V.S., 1973. Conditions of Formation and Forecasts of the Natural Regime of Groundwaters. Nedra, Moscow, 152 p. (in Russian) [Ковалевский В.С. Условия формирования и прогнозы естественного режима подземных вод. М.: Недра, 1973. 152 с.].

27. Medvedev S.V., Sponheuer W., Kárník V., 1965. Seismic Intensity Scale MSK–64. Interdepartmental Geophysical Commission of the USSR Acad. Sci., Moscow, 11 p. (in Russian) [Медведев С.В., Шпонхойер В., Карник В. Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.].

28. National Earthquake Information Center, 2017. Available from: http://earthquake.usgs.gov (last accessed November 14, 2017).

29. Okada Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75 (4), 1135–1154.

30. Roeloffs E.A., 1998. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. Journal of Geophysical Research: Solid Earth 103 (B1), 869–889. https://doi.org/10.1029/97JB02335.

31. Shi Z., Wang G., Manga M., Wang C.Y., 2015. Mechanism of co-seismic water level change following four great earthquakes – insights from co-seismic responses throughout the Chinese mainland. Earth and Planetary Science Letters 430, 66–74. https://doi.org/10.1016/j.epsl.2015.08.012.

32. The Global Centroid Moment Tensor Project, 2017. Available from: http://www.globalcmt.org (last accessed November 14, 2017).

33. Wang C.-Y., Cheng L.H., Chin C.V., Yu S.B., 2001. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology 29 (9), 831–834. https://doi.org/10.1130/0091-7613(2001)029<0831:CHROAA>2.0.CO;2.

34. Wang C.-Y., Manga M., 2010. Earthquakes and Water. Lecture Notes in Earth Sciences, vol. 114. Springer, Berlin, 249 p. https://doi.org/10.1007/978-3-642-00810-8.


Review

For citations:


Boldina S.V., Kopylova G.N. EFFECTS OF THE JANUARY 30, 2016, Mw=7.2 ZHUPANOVSKY EARTHQUAKE ON THE WATER LEVEL VARIATIONS IN WELLS YUZ-5 AND E-1 IN KAMCHATKA. Geodynamics & Tectonophysics. 2017;8(4):863-880. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0321

Views: 1276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)