ASSESSMENT OF THE INFLUENCE OF MODERN CRUSTAL MOVEMENTS AND THE RECENTLY ACTIVATED PRECAMBRIAN STRUCTURAL PLAN ON THE RELIEF OF THE LAKE LADOGA REGION (THE SOUTHEASTERN BALTIC SHIELD)
https://doi.org/10.5800/GT-2017-8-4-0317
Abstract
This paper describes the influence of modern crustal movements and the recently activated Precambrian structural plan on the relief of theLakeLadogaregion. It presents the results of comprehensive studies, including processing of the regional geological and geomorphological data by the modern methods, as the major novelty of our work. The solutions of earthquake focal mechanisms suggest the current subhorizontal NW compression in the study area. Based on the computer simulation by the Roxar software, we have identified areas wherein new fractures are most likely to occur, determined the dominant directions of such fractures, and revealed the areas of intense vertical movements in the given stress state. The input database included a digital model of the relief and the spatial patterns of ancient faults represented by large-size inhomogeneities influencing the stress field. Strain values were estimated from the horizontal displacements recorded by the International GPS Service for Geodynamics (IGS) and the GPS networks in theRepublicofKareliaand the southeastern regions ofFinland. Using the LESSA software, we have estimated the relief orientation characteristics: the density of lineaments, and elongation lines, which are indicative of the changes in the dominant directions of the strike of the lineaments (‘hatches’) in the study area. By interpreting the satellite images and the topographic maps (scale 1:20000), we reveal a number of geological structures, such as granite-gneiss domes and large-size faults, which are directly reflected in the relief. The study results give grounds to establish an indirect relationship between the relief and the modern field of deformation: the areas with high strain values correspond to the areas with steep slopes. The computer simulation data show a NE-trending linear zone with the increased amplitudes of vertical movements. This zone occupies the region along the NW shoreLakeLadoga. In the block divisibility scheme based on the relief analysis, this region is comprised of blocks that are small in area: the Pearson correlation coefficient between the density of the block boundaries and the vertical displacements amounts to 65 %. In addition, this zone is distinguished by an increased permeability of the crust, which was estimated from the helium survey data. Most of the seismic events occurred in the areas characterized by either high or medium probability of new fracturing in case of NW compression. This gives an argument in support of the conclusion that compression takes place in theLadoga Lakeregion at the present stage. According to estimations by the LESSA software, the maximum densities of the linear relief elements correlate with the spatial patterns of the Precambrian faults. A number of faults and granite-gneiss domes are directly manifested in the relief, reflecting the inherited nature of the development of the latter.
About the Authors
A. O. AgibalovRussian Federation
Agibalov, Alexei O., postgraduate student
1 Leninskie Gory, GSP-1, Moscow 119991, Russia
V. A. Zaytsev
Russian Federation
Zaitsev, Vladimir A., Candidate of Geology and Mineralogy, Lead Researcher
1 Leninskie Gory, GSP-1, Moscow 119991, Russia
A. A. Sentsov
Russian Federation
Sentsov, Alexei A., postgraduate student
1 Leninskie Gory, GSP-1, Moscow 119991, Russia
A. S. Devyatkina
Russian Federation
Deviatkina, Anastasia S., student
1 Leninskie Gory, GSP-1, Moscow 119991, Russia
References
1. Ahola J., Ollikainen M., Koivula H., 2005. GPS Operations at Olkiluoto, Kivetty and Romuvaara in 2002–2003. Finnish Geodetic Institute, Kirkkonummi, 288 p.
2. Assinovskaya B.A., Ovsov M.K., Karpinsky V.V., Mekhryushev D.Yu., 2009. Seismic events on Ladoga. Georisk (3), 6–12 (in Russian) [Ассиновская Б.А., Овсов М.К., Карпинский В.В., Мехрюшев Д.Ю. Сейсмические события на Ладоге // Геориск. 2009. № 3. С. 6–12].
3. Assinovskaya B.A., Shchukin J., Gorshkov V., Shcherbakova N., 2011. On recent geodynamics of the Eastern Baltic Sea region. Baltica 24 (2), 61–70.
4. Baltybaev Sh.K., Glebovitskii V.A., Kozyreva I.V., Shul’diner V.I., 1996. The Meyeri Thrust: The main element of the suture at the boundary between the Karelian Craton and the Svecofennian belt in the Ladoga region of the Baltic Shield. Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections 348 (4), 581–584.
5. Baltybaev Sh.K., Glebovitsky V.A., Kozyreva I.V., Konopel’ko D.L., Levchenkov O.A., Sedova I.S., Schuldiner V.I., 2000. Geology and Petrology of Svekofennids in the Lake Ladoga Region. Publishing House of St. Petersburg State University, St. Petersburg, 200 p. (in Russian) [Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В., Конопелько Д.Л., Левченков О.А., Седова И.С, Шульдинер В.И. Геология и петрология свекофеннид Приладожья. СПб.: Изд-во СПбГУ, 2000. 200 с.].
6. Becker J.J., Sandwell D.T., Smith W.H.F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S-H., Ladner R., Marks K., Nelson S., Pharaoh A., Trimmer R., Von Rosenberg J., Wallace G., Weatherall P., 2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy 32 (4), 355–371. https://doi.org/10.1080/01490410903297766.
7. Bogachev M.A., Borodulina G.S., 2008. Relationship between helium anomalies in groundwaters of Karelia and tectonic zones. In: Relationship between the surface and deep structures of the crust. Proceedings of the XIV International Conference. Part 1. Publishing House of Karelian Research Center, Petrozavodsk, Vol. 1. p. 62–63 (in Russian) [Богачев М.А., Бородулина Г.С. Связь аномалий гелия в подземных водах Карелии с тектоническими зонами // Связь поверхностных структур земной коры с глубинными: Материалы XIV международной конференции. Часть 1. Петрозаводск: Издательство КарНЦ РАН, 2008. Т. 1. С. 62–63].
8. Bowes D.R., Halden N.M., Koistinen T.J., Park A.F., 1984. Structural features of basement and cover rocks in the eastern Svecocarelides, Finland. In: A. Kröner, R. Greiling (Eds.), Precambrian tectonics illustrated. Schweizerbart Science Publishers, Stuttgart, Germany, p. 147–171.
9. Earthquake Database of the Institute of Seismology of the University of Helsinki, 2017. Available from: http://www.seismo.helsinki.fi/EQ-search/query.php (last accessed October 31, 2017).
10. Eremeev A.N. (Ed.), 1983. Scheme of Permeability of the Crust in the European Regions of the USSR from the Data of Helium Surveys. Scale 1:2500000. The USSR Ministry of Geology, All-Union Scientific Research Institute of Mineral Raw Materials, Moscow (in Russian) [Схема проницаемости земной коры европейской части СССР по данным гелиевых исследований. Масштаб 1:2500000 / Ред. А.Н. Еремеев. М.: Министерство геологии СССР, Всесоюзный научно-исследовательский институт минерального сырья, 1983].
11. Eskola P.E., 1948. The problem of mantled gneiss domes. Quarterly Journal of the Geological Society 104 (1–4), 461–476. https://doi.org/10.1144/GSL.JGS.1948.104.01-04.21.
12. Galaganov O.N., Gorshkov V.L., Guseva T.V., Rosenberg N.K., Perederin V.P., Shcherbakova N.V., 2011. Recent crustal motion of Ladoga-Onega Region revealed from satellite and ground measurements. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa (Current Problems in Remote Sensing of the Earth from Space) 8 (2), 130–136 (in Russian) [Галаганов О.Н., Горшков В.Л., Гусева Т.В., Розенберг Н.К., Передерин В.П., Щербакова Н.В. Современные движения земной коры Ладого-Онежского региона по данным спутниковых и наземных измерений // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 2. С. 130–136].
13. Grigorieva L.V., Shinkarev N.F., 1981. Conditions for formation of dome structures in the Lake Ladoga region. Izvestiya AN SSSR, Seriya Geologicheskaya (3), 41–50 (in Russian) [Григорьева Л.В., Шинкарев Н.Ф. Условия образования купольных структур в Приладожье // Известия АН СССР, серия геологическая. 1981. № 3. С. 41–50].
14. Kazakov A.N., Miller Yu.V., Duk V.L., Kharitonov A.L., 1977. Structural Evolution of Metamorphic Complexes. Nauka, Leningrad, 159 p. (in Russian) [Казаков А.Н., Миллер Ю.В., Дук В.Л., Харитонов А.Л. Структурная эволюция метаморфических комплексов. Л.: Наука, 1977. 159 с.].
15. Khazov R.A., Sharov N.V., Isanina E.V., 2004. Deep structure and metallogeny of the Lake Ladoga region. In: Geology and natural resources of Karelia, vol. 7, p. 55–74 (in Russian) [Хазов Р.А., Шаров Н.В., Исанина Э.В. Глубинное строение и металлогения Приладожья // Геология и полезные ископаемые Карелии. 2004. Вып. 7. С. 55–74].
16. King G.C.P., Cocco M., 2001. Fault interaction by elastic stress changes: New clues from earthquake sequences. In: R. Dmowska, B. Saltzman (Eds.), Advances in geophysics, vol. 44, p. 1–38. https://doi.org/10.1016/S0065-2687(00)80006-0.
17. Krupennikova I.S., Mokrova A.N., Guseva T.V., 2015. Modern deformation and seismicity of the crust in the Baltic Shield. In: Modern tectonophysics. Methods and results. Materials of the 4th Youth Tectonophysical Workshop. IPE RAS, Moscow, Vol. 1, p. 166–173 (in Russian) [Крупенникова И.С., Мокрова А.Н., Гусева Т.В. Современные деформации и сейсмичность земной коры Балтийского щита // Современная тектонофизика. Методы и результаты: Материалы четвертой молодежной тектонофизической школы-семинара. М.: ИФЗ РАН, 2015. Т. 1. С. 166–173].
18. Kulikov V.S., Svetov S.A., Slabunov A.I., Kulikova V.V., Polin A.K., Golubev A.I., Gorkovets V.Ya., Ivashchenko V.I., Gogolev M.A., 2017. Geological map of Southeastern Fennoscandia (scale 1:750000): a new approach to map compilation. Procee¬dings of the Karelian Research Center of RAS. Series Precambrian Geology (2), 3–41 (in Russian) [Куликов В.С., Светов С.А., Слабунов А.И., Куликова В.В., Полин А.К., Голубев А.И., Горьковец В.Я., Иващенко В.И., Гоголев М.А. Геологическая карта Юго-Восточной Фенноскандии масштаба 1:750000: новые подходы к составлению // Труды Карельского научного центра РАН. Серия Геология докембрия. 2017. № 2. С. 3–41]. https://doi.org/10.17076/geo444.
19. Lukashov A.D., 1976. Morphological structure of the Northern Lake Ladoga region. In: Geomorphology and Quaternary geology of the North European regions of the USSR. Publishing House of the Karelian Branch of the USSR Acad. Sci., Petrozavodsk, p. 50–59 (in Russian) [Лукашов А.Д. Морфоструктура Северного Приладожья // Геоморфология и геология четвертичного периода севера европейской части СССР. Петрозаводск: Изд-во Карельского филиала АН СССР, 1976. С. 50–59].
20. Morozov Y.A., 1999. The role of transpression in the structural evolution of the Svecokarelides in the Baltic Shield. Geotectonics 33 (4), 302–313.
21. Morozov Yu.A., Gaft D.E., 1985. On the nature of granite-gneiss domes in the Northern Lake Ladoga region. In: Structure and petrology of Precambrian complexes. IPE of USSR Acad. Sci., Moscow, p. 3–121 (in Russian) [Морозов Ю.А., Гафт Д.Е. О природе гранито-гнейсовых куполов Северного Приладожья // Структура и петрология докембрийских комплексов. М.: ИФЗ АН СССР, 1985. С. 3–121].
22. Morozov Yu.A., Somin M.L., Travin V.V., 2000. The behavior of granitoid basement involved in the formation of the Svekokarelian Foldbelt, Northern Ladoga region. Doklady Earth Sciences 370 (1), 58–62.
23. Nikonov A.A., 2005. East Ladoga earthquake of November 30, 1921. Izvestiya, Physics of the Solid Earth 41 (7), 525–529.
24. Nikonov A.A., Shvarev S.V., 2015. Seismolineaments and strong earthquakes in the Russian regions of the Baltic Shield: new solutions for the last 13 thousand years. In: Geological and geophysical medium and various manifestations of seismicity. Proceedings of the international conference. Publishing House of NEFU Technical Institute, Neryungri, p. 243–251 (in Russian) [Никонов А.А., Шварев С.В Сейсмолинеаменты и разрушительные землетрясения в российской части Балтийского щита: новые решения для последних 13 тысяч лет // Геолого-геофизиче¬ская среда и разнообразные проявления сейсмичности: Материалы международной конференции. Нерюнгри: Изд-во Технического Института СВФУ, 2015. С. 243–251].
25. Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russian Geology and Geophysics 57 (6), 843–857. https://doi.org/10.1016/j.rgg.2016.05.002.
26. Slunga R.S., 1991. The Baltic Shield earthquakes. Tectonophysics 189 (1–4), 323–331. https://doi.org/10.1016/0040-1951(91)90505-M.
27. Sudovikov N.G., Glebovitsky V.A., Sergeev A.S., Petrov V.P., Kharitonov A.L., 1970. Geological Development of Deep Zones in Mobile Belts (North Lake Ladoga Region). Nauka, Leningrad, 227 p. (in Russian) [Судовиков Н.Г., Глебовицкий В.А., Сергеев А.С., Петров В.П., Харитонов А.Л. Геологическое развитие глубинных зон подвижных поясов (Северное Приладожье). Л.: Наука, 1970. 227 с.].
28. User Guide for “Analysis Package Reservoir Modelling System (RMS)”, 2012 (in Russian) [Руководство пользователя «Analysis Package Reservoir Modelling System (RMS)», 2012]. Available from: www.geodisaster.ru/index.php?page=uchebnye-posobiya-2.
29. Zlatopolsky A.A., 2011. New LESSA technology resources and digital terrain map analysis. Methodology. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa (Current Problems in Remote Sensing of the Earth from Space) 8 (3), 38–46 (in Russian) [Златопольский А.А. Новые возможности технологии LESSA и анализ цифровой модели рельефа. Методический аспект // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 3. С. 38–46].
Review
For citations:
Agibalov A.O., Zaytsev V.A., Sentsov A.A., Devyatkina A.S. ASSESSMENT OF THE INFLUENCE OF MODERN CRUSTAL MOVEMENTS AND THE RECENTLY ACTIVATED PRECAMBRIAN STRUCTURAL PLAN ON THE RELIEF OF THE LAKE LADOGA REGION (THE SOUTHEASTERN BALTIC SHIELD). Geodynamics & Tectonophysics. 2017;8(4):791–807. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0317