Preview

Geodynamics & Tectonophysics

Advanced search

THE ACTIVE FAULTS OF EURASIA DATABASE

https://doi.org/10.5800/GT-2017-8-4-0314

Abstract

This paper describes the technique used to create and maintain the Active Faults of Eurasia Database (AFED) based on the uniform format that ensures integrating the materials accumulated by many researchers, inclu­ding the authors of the AFED. The AFED includes the data on more than 20 thousand objects: faults, fault zones and associated structural forms that show the signs of latest displacements in the Late Pleistocene and Holocene. The geographical coordinates are given for each object. The AFED scale is 1:500000; the demonstration scale is 1:1000000. For each object, the AFED shows two kinds of characteristics: justification attributes, and estimated attributes. The justification attributes inform the AFED user about an object: the object’s name; morphology; kinematics; the amplitudes of displacement for different periods of time; displacement rates estimated from the amplitudes; the age of the latest recorded signs of activity, seismicity and paleoseismicity; the relationship of the given objects with the parameters of crustal earthquakes; etc. The sources of information are listed in the AFED appendix. The estimated attributes are represented by the system of indices reflecting the fault kinematics according to the classification of the faults by types, as accepted in structural geology, and includes three ranks of the Late Quaternary movements and four degrees of reliability of identifying the structures as active ones. With reference to the indices, the objects can be compared with each other, considering any of the attributes, or with any other digitized information. The comparison can be performed by any GIS software. The AFED is an efficient tool for obtaining the information on the faults and solving general problems, such as thematic mapping, determining the parameters of modern geodynamic processes, estima­ting seismic and other geodynamic hazards, identifying the tectonic development trends in the Pliocene–Quaternary stage of the Earth's development, etc. The Active Faults of Eurasia Database is created in the format providing for inputs of new information, as well the database updating and revision.

About the Authors

D. M. Bachmanov
Geological Institute of RAS
Russian Federation

Bachmanov, Dmitry M., Candidate of Geology and Mineralogy, Senior Researcher 

7 Pyzhevsky lane, Moscow 119017, Russia



A. I. Kozhurin
Geological Institute of RAS; Institute of Volcanology and Seismology, Far East Branch of RAS
Russian Federation

Kozhurin, Andrei I., Doctor of Geology and Mineralogy, Head of Laboratory 

7 Pyzhevsky lane, Moscow 119017; 9 Piip Boulevard, Petropavlovsk-Kamchatsky 683006, Russia




V. G. Trifonov
Geological Institute of RAS
Russian Federation

Trifonov, Vladimir G., Doctor of Geology and Mineralogy, Senior Researcher 

7 Pyzhevsky lane, Moscow 119017, Russia



References

1. Basili R., Kastelic V., Demircioglu M.B., Garcia Moreno D., Nemser E.S., Petricca P., Sboras S.P., Besana-Ostman G.M., Cabral J., Camelbeeck T., Caputo R., Danciu L., Domac H., Fonseca J., García-Mayordomo J., Giardini D., Glavatovic B., Gulen L., Ince Y., Pavlides S., Sesetyan K., Tarabusi G., Tiberti M.M., Utkucu M., Valensise G., Vanneste K., Vilanova S., Wössner J., 2013. The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. Available from: http://diss.rm.ingv.it/share-edsf/ (last accessed October 29, 2017). https://doi.org/10.6092/INGV.IT-SHARE-EDSF.

2. Distribution of Active Faults and Trenches in the Philippines, 2008. Philippine Institute of Volcanology and Seismology (PHIVOLCS). Department of Science and Technology. Available from: http://www.phivolcs.dost.gov.ph (last accessed October 29, 2017).

3. Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Active Fault Map of Turkey with and Explanatory Text. General Directorate of Mineral Research and Exploration, Special Publication Series-30. Ankara, Turkey. Available from: http://www.mta.gov.tr/eng/maps/active-fault-1250000. (last accessed October 29, 2017).

4. Galadini F., Meletti C., Vittori E., 2001. Major active faults in Italy: available surficial data. Netherlands Journal of Geo¬sciences 80 (3–4), 273–296. https://doi.org/10.1017/S001677460002388X.

5. García-Mayordomo J., Insua-Arévalo J.M., Martínez-Díaz J.J., Jiménez-Díaz A., Martín-Banda R., Martín-Alfageme S., Álvarez-Gómez J.A., Rodríguez-Peces M., Pérez-López R., Rodríguez-Pascua M.A., Masana E., Perea H., Martín-González F., Giner-Robles J., Nemser E.S., Cabral J., QAFI compilers, 2012. The Quaternary Active Faults Database of Iberia (QAFI v.2.0). Journal of Iberian Geology 38 (1), 285–302. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39219.

6. Hessami Kh., Jamali F., Tabassi H. (Eds.), 2003. Major Active Faults of Iran, Scale 1:2500000. Ministry of Science, Research and Technology. International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran.

7. Jarvis A., Reuter H.I., Nelson A., Guevara E., 2008. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. Available from: http://srtm.csi.cgiar.org (last accessed November 17, 2017).

8. Jomard H., Cushing E.M., Palumbo L., Baize S., David C., Chartier T., 2017. Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France. Natural Hazards and Earth System Sciences 17 (9), 1573–1584. https://doi.org/10.5194/nhess-17-1573-2017.

9. Kosuwan S., Takashima I., Charusiri P., 2006. Active Fault Map in Thailand. Department of Mineral Resources. Thailand.

10. Kozhurin A.I., 2004. Active faulting at the Eurasian, North American and Pacific plates junction. Tectonophysics 380 (3–4), 273–285. https://doi.org/10.1016/j.tecto.2003.09.024.

11. Kozhurin A.I., 2013. Active Tectonics of the Northwestern Sector of the Pacific Tectonic Belt (According to the Study of Active Faults). PhD Brief Thesis (Doctor of Geology and Mineralogy). GIN RAS, Moscow, 46 p. (in Russian) [Кожурин А.И. Активная тектоника северо-западного сектора Тихоокеанского тектонического пояса (по данным изучения активных разломов): Автореф. дис. … докт. геол.-мин. наук. М.: ГИН РАН, 2013. 46 с.].

12. Kozhurin A.I., Ponomareva V.V., Pinegina T.K., 2008. Active faulting in the south of Central Kamchatka. Bulletin of Kamchatka Regional Association Educational–Scientific Center. Earth Sciences (2), 10–27 (in Russian) [Кожурин А.И., Пономарева В.В., Пинегина Т.К. Активная разломная тектоника юга Центральной Камчатки // Вестник КРАУНЦ. Науки о Земле. 2008. № 2. С. 10–27].

13. Lunina O.V. 2016. The digital map of the Pliocene–Quaternary crustal faults in the southern East Siberia and the adjacent Northern Mongolia. Geodynamics & Tectonophysics 7 (3), 407–434 (in Russian) [Лунина О.В. Цифровая карта разломов для плиоцен-четвертичного этапа развития земной коры юга Восточной Сибири и сопредельной территории Северной Монголии // Геодинамика и тектонофизика. 2016. Т. 7. № 3. С. 407–434]. https://doi.org/10.5800/GT-2016-7-3-0215.

14. McCalpin J.P. (Ed.), 1996. Paleoseismology. Academic Press, New York, 588 p.

15. National Research Council, 1986. Active Tectonics: Impact on Society. National Academy Press, Washington D.C., 266 p. https://doi.org/10.17226/624.

16. Ruleman C.A., Crone A.J., Machette M.N., Haller K.M., Rukstales K.S., 2007. Map and Database of Probable and Possible Quaternary Faults in Afghanistan. U.S. Geological Survey Open-File Report 2007-1103. U.S. Geological Survey, 39 p.

17. Seliverstov N.I., 2009. Geodynamics of the Conjugation Zone of the Kuril-Kamchatka and Aleutian Island Arcs. Publi¬shing House of the V. Bering Kamchatka State University, Petropavlovsk-Kamchatsky, 191 p. (in Russian) [Селиверстов Н.И. Геодинамика зоны сочленения Курило-Камчатской и Алеутской островных дуг. Петропавловск-Камчатский: Изд-во КамГУ им. В. Беринга, 2009. 191 с.].

18. Sieh K.E., 1978. Prehistoric large earthquakes by slip on the San Andreas Fault at Pallett Creek, California. Journal of Geophysical Research: Solid Earth 83 (B8), 3907–3939. https://doi.org/10.1029/JB083iB08p03907.

19. Taylor M., Yin A., 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5 (3), 199–214. https://doi.org/10.1130/GES00217.1.

20. Trifonov V.G., 1983. Late Quaternary Tectogenesis. Nauka, Moscow, 224 p. (in Russian) [Трифонов В.Г. Позднечетвертичный тектогенез. М.: Наука, 1983. 224 с.].

21. Trifonov V.G., 1985. Features of the development of active faults. Geotektonika (Geotectonics) (2), 16–26 (in Russian) [Трифонов В.Г. Особенности развития активных разломов // Геотектоника. 1985. № 2. С. 16–26.

22. Trifonov V.G., 1997. World map of active faults, their seismic and environmental effects. In: D. Giardini, S. Balassanian (Eds.), Historical and prehistorical earthquakes in the Caucasus. Kluwer, Dordrecht, p. 169–180.

23. Trifonov V.G., 2004. Active faults in Eurasia: general remarks. Tectonophysics 380 (3–4), 123–130. https://doi.org/10.1016/j.tecto.2003.09.017.

24. Trifonov V.G., Ammar O. (Eds.), 2012. Neotectonics, Recent Geodynamics and Seismic Hazard of Syria. GEOS, Moscow, 216 p. (in Russian) [Неотектоника, современная геодинамика и сейсмическая опасность Сирии / Ред. В.Г. Трифонов. М.: ГЕОС, 2012. 216 с.].

25. Trifonov V.G., Bayractutan M.S., Karakhanian A.S., Ivanova T.P., 1993. The Erzincan earthquake of 13 March 1992 in Eastern Turkey: tectonic aspects. Terra Nova 5 (2), 184–189. https://doi.org/10.1111/j.1365-3121.1993.tb00244.x.

26. Trifonov V.G., Kozhurin A.I., 2010. Study of active faults: Theoretical and applied implications. Geotectonics 44 (6), 510–528. https://doi.org/10.1134/S0016852110060051.

27. Trifonov V.G., Machette M.N., 1993. The World Map of Major Active Faults Project. Annali di Geofisica 36 (3–4), 225–236.

28. Trifonov V.G., Soboleva O.V., Trifonov R.V., Vostrikov G.A., 2002. Recent Geodynamics of the Alpine-Himalayan Collision Belt. GEOS, Moscow, 225 p. (in Russian) [Трифонов В.Г., Соболева О.В., Трифонов Р.В., Востриков Г.А. Современная геодинамика Альпийско-Гималайского коллизионного пояса. М.: ГЕОС, 2002. 225 с.].

29. Ulomov V.I., Shumilina L.S., 1999. The Set of General Seismic Zonation Maps of the Russian Federation – OSR-97. Scale 1:8000000. Explanatory Note. UIPE RAS, Moscow, 57 p. (in Russian) [Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8000000. Объяснительная записка. М.: ОИФЗ РАН, 1999. 57 с.].

30. Wallace R.E., 1968. Notes on stream channels offset by the San Andreas Fault, southern Coast Ranges, California. In: W.R. Dickinson, A. Grantz (Eds.), Proceedings of the conference on geologic problems of the San Andreas fault system. Stanford University Publications in Geological Sciences, vol. 11, p. 6–21.

31. Yeats R.S., Sieh K., Allen C.R., 1997. The Geology of Earthquakes. Oxford University Press, New York – Oxford, 568 p.


Review

For citations:


Bachmanov D.M., Kozhurin A.I., Trifonov V.G. THE ACTIVE FAULTS OF EURASIA DATABASE. Geodynamics & Tectonophysics. 2017;8(4):711-736. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0314

Views: 3230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)