Preview

Geodynamics & Tectonophysics

Advanced search

CRUST AND MANTLE OF THE BAIKAL RIFT ZONE FROM P- AND S-WAVE RECEIVER FUNCTIONS

https://doi.org/10.5800/GT-2017-8-4-0313

Abstract

We have obtained P-wave and S-wave receiver functions for 10 broadband seismograph stations in the Baikal rift zone (BRZ) and inverted them for seismic velocity models of the crust and upper mantle. The thinnest crust (30–35 km) is found in the Baikal basin, the thickest in the East Sayan uplift (45–50 km). Intermediate values (40 km) are found in the BRZ at distances around 100 km from Lake Baikal. A high (at least 1.8) Vp/Vs ratio is observed in the middle and lower crust. It exceeds 2.0 at some stations. In our opinion, the highest Vp/Vs ratios are due to fluid-filled porosity with a high pore pressure. The seismic lithosphere – asthenosphere boundary (LAB) is manifested by a shear velocity drop from 4.5 km/s to 4.0–4.2 km/s. Beneath the Baikal basin, the LAB is located at a depth not more than 50 km, and the S velocity drop is maximal (10 %). A similar structure is found outside the basin, underneath a segment of the East Sayan uplift. At other locations in the BRZ, a typical depth of the LAB varies from 80 to 90 km. Having considered changes in the depth of the 410 km seismic discontinuity, we cannot find any evidence of an elevated temperature of a hypothetical thermal plume beneath the BRZ.

 

About the Authors

L. P. Vinnik
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

Vinnik, Lev P., Doctor of Physics and Mathematics, Chief Researcher 

10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia



S. I. Oreshin
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

Oreshin, Sergei I., Candidate of Physics and Mathematics, Lead Researcher 

10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5, Russia



L. R. Tsydypova
Geological Institute, Siberian Branch of RAS
Russian Federation

Tsydуpova, Larisa R., Candidate of Geology and Mineralogy, Researcher 

6a Sakhyanova street, Ulan-Ude 670047, Russia



V. V. Mordvinova
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Mordvinova, Valentina V., Doctor of Geology and Mineralogy, Lead Researcher 

128 Lermontov street, Irkutsk 664033, Russia



M. M. Kobelev
Baikal Branch of Federal Research Center ‘Geophysical Survey of RAS’
Russian Federation

Kobelev, Mikhail M., Engineer, Postgraduate Student 

128 Lermontov street, Irkutsk 664033, Russia



M. A. Khritova
Baikal Branch of Federal Research Center ‘Geophysical Survey of RAS’
Russian Federation

Khritova, Maria A., Lead Programmer 

128 Lermontov street, Irkutsk 664033, Russia



Ts. A. Tubanov
Geological Institute, Siberian Branch of RAS
Russian Federation

Tubanov, Tsyren A., Candidate of Geology and Mineralogy, Head of Laboratory 

6a Sakhyanova street, Ulan-Ude 670047, Russia



References

1. Artemyev M.E., Artyushkov Y.V., 1969. Origin of rift basins. International Geology Review 11 (5), 582–593. https://doi.org/10.1080/00206816909475092.

2. Cherepanova Yu., Artemieva I.M., Thybo H., Chemia Z., 2013. Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data. Tectonophysics 609, 154–183. https://doi.org/10.1016/j.tecto.2013.05.004.

3. Christensen N.I., 1996. Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth 101 (B2), 3139–3156. https://doi.org/10.1029/95JB03446.

4. Déverchère J., Petit C., Gileva N., Radziminovitch N., Melnikova V., San'kov V., 2001. Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere. Geophysical Journal International 146 (3), 714–730. https://doi.org/10.1046/j.0956-540x.2001.1484.484.x.

5. Du Z., Vinnik L., Foulger G., 2006. Evidence from P-to-S mantle converted waves for a flat “660-km” discontinuity beneath Iceland. Earth and Planetary Science Letters 241 (1–2), 271–280. https://doi.org/10.1016/j.epsl.2005.09.066.

6. Epov M.I., Pospeeva E.V., Vitte L.V., 2012. Crust structure and composition in the Southern Siberian craton (influence zone of Baikal rifting), from magnetotelluric data. Russian Geology and Geophysics 53 (3), 293–306. https://doi.org/10.1016/j.rgg.2012.02.006.

7. Farra V., Vinnik L., 2000. Upper mantle stratification by P and S receiver functions. Geophysical Journal International 141 (3), 699–712. https://doi.org/10.1046/j.1365-246x.2000.00118.x.

8. Gao S., Davis P., Liu K., Slack P., Zorin Y., Logachev N., Kogan M., Burkholder P., Meyer R., 1994. Asymmetric upwarp of the asthenosphere beneath the Baikal rift zone, Siberia. Journal of Geophysical Research: Solid Earth 99 (B8), 15319–15330. https://doi.org/10.1029/94JB00808.

9. Gao S.S., Liu K.H., Chen C., 2004. Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis. Geophysical Research Letters 31 (20), L20610. https://doi.org/10.1029/2004GL020813.

10. Gao S., Liu K., Davis P., Slack P., Zorin Y., Mordvinova V., Kozhevnikov V., 2003. Evidence for small‐scale mantle convection in the upper mantle beneath the Baikal rift zone. Journal of Geophysical Research: Solid Earth 108 (B4), 2194. https://doi.org/10.1029/2002JB002039.

11. Haskell N.A., 1962. Crustal reflection of plane P and SV waves. Journal of Geophysical Research 67 (12), 4751–4768. https://doi.org/10.1029/JZ067i012p04751.

12. Krylov S.V., Mishenkin B.P., Bryskin A.V., 1991. Deep structure of the baikal rift from multiwave seismic explorations. Journal of Geodynamics 13 (1), 87–96. https://doi.org/10.1016/0264-3707(91)90032-A.

13. Logachev N.A., Zorin Yu.A., 1992. Baikal rift zone: structure and geodynamics. Tectonophysics 208 (1–3), 273–286. https://doi.org/10.1016/0040-1951(92)90349-B.

14. Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419.

15. Mosegaard K., Vestergaard P.D., 1991. A simulated annealing approach to seismic model optimization with sparse prior information. Geophysical Prospecting 39 (5), 599–611. https://doi.org/10.1111/j.1365-2478.1991.tb00331.x.

16. Nielsen C., Thybo H., 2009. No Moho uplift below the Baikal rift zone: Evidence from a seismic refraction profile across southern Lake Baikal. Journal of Geophysical Research: Solid Earth 114 (B8), B08306. https://doi.org/10.1029/2008JB005828.

17. Peacock S.M., Christensen N.I., Bostock M.G., Audet P., 2011. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39 (5), 471–474. https://doi.org/10.1130/G31649.1.

18. Petit C., Déverchère J., 2006. Structure and evolution of the Baikal rift: a synthesis. Geochemistry, Geophysics, Geosystems 7 (11), Q11016. https://doi.org/10.1029/2006GC001265.

19. Petit C., Koulakov I., Déverchère J., 1998. Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications. Tectonophysics 296 (1–2), 125–144. https://doi.org/10.1016/S0040-1951(98)00140-1.

20. Popov A.M., Kiselev A.I., Mordvinova V.V., 1999. Geodynamical interpretation of crustal and upper mantle electrical conductivity anomalies in Sayan-Baikal province. Earth Planets and Space 51 (10), 1079–1089. https://doi.org/10.1186/BF03351582.

21. Puzyrev N.N., Mandelbaum M.M., Krylov S.V., Mishenkin B.P., Petrik G.V., Krupskaya G.V., 1978. Deep structure of the Baikal and other continental rift zones from seismic data. Tectonophysics 45 (1), 15–22. https://doi.org/10.1016/0040-1951(78)90219-6.

22. Vinnik L.P., 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors 15 (1), 39–45. https://doi.org/10.1016/0031-9201(77)90008-5.

23. Vinnik L., Kozlovskaya E., Oreshin S., Kosarev G., Piiponen K., Silvennoinen H., 2016. The lithosphere, LAB, LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions. Tectonophysics 667, 189–198. https://doi.org/10.1016/j.tecto.2015.11.024.

24. Vinnik L., Oreshin S., Makeyeva L., Dündar S., 2017. Fluid-filled porosity of magmatic underplates from joint inversion of P and S receiver functions. Geophysical Journal International 209 (2), 961–968. https://doi.org/10.1093/gji/ggx067.

25. Vinnik L.P., Reigber C., Aleshin I.M., Kosarev G.L., Kaban M.K., Oreshin S.I., Roecker S.W., 2004. Receiver function tomography of the central Tien Shan. Earth and Planetary Science Letters 225 (1), 131–146. https://doi.org/10.1016/j.epsl.2004.05.039.

26. Yanovskaya T.B., Kozhevnikov V.M., 2003. 3-D S wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors 138 (3–4), 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7.

27. Zhao D., Lei J., Inoue T., Yamada A., Gao S.S., 2006. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 243 (3), 681–691. https://doi.org/10.1016/j.epsl.2006.01.033.

28. Zhu L., Kanamori H., 2000. Moho depth variation in Southern California from receiver functions. Journal of Geophysical Research: Solid Earth 105 (B2), 2969–2980. https://doi.org/10.1029/1999JB900322.

29. Zorin Y.E., Kozhevnikov V.M., Novoselova M.R., Turutanov E.K., 1989. Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions. Tectonophysics 168 (4), 327–337. https://doi.org/10.1016/0040-1951(89)90226-6.

30. Zorin Y., Turutanov E., Mordvinova V., Kozhevnikov V., Yanovskaya T., Treussov A., 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371 (1–4), 153–173. https://doi.org/10.1016/S0040-1951(03)00214-2.


Review

For citations:


Vinnik L.P., Oreshin S.I., Tsydypova L.R., Mordvinova V.V., Kobelev M.M., Khritova M.A., Tubanov Ts.A. CRUST AND MANTLE OF THE BAIKAL RIFT ZONE FROM P- AND S-WAVE RECEIVER FUNCTIONS. Geodynamics & Tectonophysics. 2017;8(4):695-709. (In Russ.) https://doi.org/10.5800/GT-2017-8-4-0313

Views: 1392


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)