Preview

Геодинамика и тектонофизика

Расширенный поиск

УСКОРЕННЫЙ СИНЕРГИЗМ ВДОЛЬ РАЗЛОМА: ВОЗМОЖНЫЙ ИНДИКАТОР НЕИЗБЕЖНОГО КРУПНОГО ЗЕМЛЕТРЯСЕНИЯ

https://doi.org/10.5800/GT-2014-5-2-0134

Полный текст:

Аннотация

Обычно принято считать, что причиной землетрясений земной коры является внезапное смещение вдоль разлома при наличии двух основных условий. Первое условие связано с высоким синергизмом разлома, когда при достижении предельного уровня напряжений отдельные участки разлома очень быстро соединяются друг с другом, способствуя быстрому смещению более длинных участков данного разлома. Второе условие заключается в значительном напряжении, накопленном на отдельных участках разлома, при котором может быть преодолено сопротивление смещению высокопрочных участков разлома. Исследование таких процессов может помочь в выявлении краткосрочных неизбежных предвестников, проявляющихся перед землетрясениями. В лабораторных условиях проводится моделирование состояния нестабильности прямого разлома. Полученные кривые вариаций напряжений позволили установить состояния напряжений модели и выявить стадию метанестабильности. В данной работе проведено сравнение данных, полученных путем наблюдения процесса на модельной установке, с физическими параметрами полей образца и выявлены различия процессов пространственно-временного развития разломных напряжений по стадиям, когда отмечены отклонения напряжений от линейности и метанестабильности. Результаты исследования показали, что вследствие взаимодействия отдельных участков разлома их независимая активность постепенно переходит в синергетическую активность, и такой синергизм является показателем состояния напряжений разлома. Процесс синергетической активности разлома проходит три стадии развития: возникновение небольших участков, где высвобождаются напряжения, расширение и увеличение размеров таких участков высвобождения напряжений и соединение участков, где идет высвобождение напряжений. Первая стадия начинается, когда кривая напряжений отклоняется от линейности, при этом на каждом участке разлома имеют место вариации напряжений, в результате чего появляются отдельные изолированные участки, где происходит высвобождение и накопление напряжений. Вторая стадия связана с квазистатической нестабильностью ранней метанестабильности, когда отдельные участки разлома, где идет высвобождение напряжений, увеличиваются в размерах и продолжается их стабильное расширение. Третья стадия соответствует поздней метанестабильности, т.е. квазидинамической нестабильности, поскольку ускоряются как расширение участков высвобождения напряжений, так и усиление уровня напряжений на участках накопления напряжений. Синергизм ускоряется, когда квазистатические трансформации переходят в квазидинамическое расширение, при этом действует механизм взаимодействия между участками разлома. Суть такой трансформации заключается в изменении  механизма расширения участков – расширение изолированных участков разлома сменяется на слияние таких участков при их взаимодействии, когда разлом входит в критическую стадию потенциального землетрясения. На основе данных, полученных экспериментальным путем и дополненных информацией о пространственно-временной эволюции землетрясений вдоль разлома Лаохушан-Маомаошан в западной части разломной зоны Хайюань в Северо-Восточном Китае, проанализирован процесс синергизма данного разлома перед землетрясением магнитудой 6.2, которое произошло 6 июня 2000 г.

 

Об авторах

Ма Дзинь
Национальная ведущая лаборатория динамики землетрясений, Институт геологии, Администрация Китая по землетрясениям, Пекин, Китай
Китай

академик Китайской академии наук, геолог, тектонофизик 
Государственная центральная лаборатория геодинамики Земли, Институт геологии, 
Администрация по землетрясениям Китая 
100029, Пекин, Китай 



Гуо Яншуань
Национальная ведущая лаборатория динамики землетрясений, Институт геологии, Администрация Китая по землетрясениям, Пекин, Китай
Китай

ассистент-исследователь, специалист в области техники и экспериментальной механики Государственная центральная лаборатория геодинамики Земли, Институт геологии, Администрация по землетрясениям Китая
100029, Пекин, Китай



С. И. Шерман
Институт земной коры СО РАН, Иркутск, Россия
Россия

академик Российской академии естественных наук,
докт. геол.мин. наук, профессор, г.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия
Тел.: (3952)428261



Список литературы

1. Bakun W.H., Lindh A.G., 1985. The Parkfield, California, earthquake prediction experiment. Science 229 (4714), 619-624. http://dx.doi.org/10.1126/science.229.4714.619.

2. Ben-Zion Y., Rice J.R., Dmowska R., 1993. Interaction of the San Andreas fault creeping segment with adjacent great rupture zones, and earthquake recurrence at Parkfield. Journal Geophysical Research 98 (B2), 2135-2144. http://dx.doi.org/ 10.1029/92JB02154.

3. Beroza G.C., Ide S., 2009. Deep tremors and slow quakes. Science 324 (5930), 1025-1026, http://dx.doi.org/10.1126/ science1171231.

4. Chen Y.T., 2009. Earthquake prediction: Retrospect and prospect. Science China: Earth Sciences 3912, 1633-1658 (in Chi¬nese).

5. Cicerone R.D., Ebel J.E., Britton J., 2009. A systematic compilation of earthquake precursors. Tectonophysics 476 (3-4), 371-396. http://dx.doi.org/10.1016Zj.tecto.2009.06.008.

6. Du Yijun, Ma Jin, Li Jianguo, 1989. Interaction and stability of en echelon cracks. Acta Geophysica Sinica 32 (1), 218-231 (in Chinese).

7. Ellsworth W.L., Beroza G.C., 1995. Seismic evidence for an earthquake nucleation phase. Science 268 (5212), 851-855. http://dx.doi.org/10.1126/science.268.5212.851.

8. Fedotov S.A., 1968. On seismic cycle, opportunities of quantitative seismic regionalization and long-term seismic forecast. In: Seismic zoning in the USSR. Nauka, Moscow, p. 121-150.

9. Gomberg J., Bodin P., Reasonberg P.A., 2003. Observing earthquakes triggered in the near field by dynamic deformations. Bulletin of the Seismological Society of America 93 (1), 118-138. http://dx.doi.org/10.1785/0120020075.

10. Jaeger J.C., Cook N.G.W., 1979. Fundamentals of Rock Mechanics, Third Edition. Chapman and Hall, London, 593 p.

11. Johnson B.F., 2009. Earthquake prediction: gone and back again. Earth 4, 30-33.

12. Jordan T.H., Yun-Tai Chen, Gasparini P. et al., 2011. Operational earthquake forecasting-state of knowledge and guidelines for utilization. Annals of Geophysics 54 (4), 315-391. http://dx.doi.org/10.4401/ag-5350.

13. Konca A.O., Avouac J.P., Sladen A., Meltzner A.J., Sieh K., Fang P., Li Z.H., Galetzka J., Genrich J., Chlieh M., Natawidjaja D.H., Bock Y., Fielding E.J., Ji C., Helmberger D.V., 2008. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456 (7222), 631-635. http://dx.doi.org/10.1038/nature07572.

14. Liu Yuanzheng, Ma Jin, Ma Wentao, 2014. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. Earth Science Frontiers 21 (1), 150-160 (in Chinese).

15. Ma Jin, Sherman S.I., Guo Yan Shuang, 2012. Identification of meta-instable stress state based on experimental study of evo¬lution of the temperature field during stick-slip instability on a 5 bending fault. Science China: Earth Sciences 55 (6), 869-881. http://dx.doi.org/10.1007/s11430-012-4423-2.

16. Ma Shengli, Liu Liqiang, Ma Jin et al., 2003. Experimental study on nucleation process of stick-slip instability on homoge¬neous and non-homogeneous faults. Science China: Earth Sciences 46, 56-66. http://dx.doi.org/10.1360/03dz0005.

17. Ma Shengli, Ma Jin, Liu Liqiang, 2002. Experimental evidence for seismic nucleation phase. Chinese Science Bulletin 47 (9), 769-773. http://dx.doi.org/10.1360/02tb9174.

18. Matsumura S., 1997. Focal zone of a future Tokai earthquake inferred from the seismicity pattern around the plate interface. Tectonophysics 273 (3-4), 271-291. http://dx.doi.org/10.1016/S0040-1951(96)00277-6.

19. Mogi K., 1981. Earthquake prediction program in Japan. In: Simpson D.W., Richards P., eds. Earthquake prediction - An International Review. Maurice Ewing Monograph Series 4. American Geophysical Union, Washington DC, p. 635-666.

20. Nishenko S.P., 1991. Circum-Pacific seismic potential: 1989-1999. Pure and Applied Geophysics Topical Volumes. Aspects of Pacific Seismicity, p. 169-259. http://dx.doi.org/10.1007/978-3-0348-5639-3_2.

21. Noda H., Nakatani V., Hori T., 2013. Large nucleation before large earthquakes is sometimes skipped due to cascade-up - implications from a rate and state simulation of faults with hierarchical asperities. Journal of Geophysical Research: Solid Earth 118 (6), 2924-2952. http://dx.doi.org/10.1002/jgrb. 50211.

22. Ren Yaqiong, Liu Peixun, Ma Jin, Chen Shunyun, 2013. An experimental study on evolution of thermal field of en echelon fault during the meta-instability stage. Chinese Journal of Geophysics 56 (5), 612-622. http://dx.doi.org/10.1002/cjg2. 20057.

23. Schwartz D.P., Coppersmith K.J., 1984. Fault behavior and characteristic earthquakes - examples from Wasatch and San Andreas fault zones. Journal of Geophysical Research 89 (B7), 5681-5698. http://dx.doi.org/10.1029/JB089iB07p05681.

24. Science of Earthquake Prediction, 2007. Review Committee for Earthquake Prediction of Japan Seismological Society. Uni¬versity of Tokyo Press, Tokyo, 218 p. (in Japanese).

25. Shearer C.F., 1958. Southern San Andreas fault geometry and fault zone deformation: implications for earthquake prediction. National Earthquake Prediction Council Meeting, March, 1985. US Geol. Surv. Open-file. Rep. 85-507, USGS, Reston, Virginia, USA, p. 173-174.

26. Shimazaki K., Nakata T., 1980. Time-predictable recurrence model for large earthquakes. Geophysical Research Letters 7 (4), 279-282. http://dx.doi.org/10.1029/GL007i004p00279.

27. Stein R.S., 1999. The role of stress transfer in earthquake occurrence. Nature 402 (6762), 605-609. http://dx.doi.org/10.1038/ 45144.

28. Sykes L.R., 1971. Aftershock zones of great earthquakes, seismicity gaps and prediction // Journal of Geophysical Research 76 (32), 8021-8041. http://dx.doi.org/10.1029/JB076i032p08021.

29. The Haiyuan fault zone, 1990. State Seismological Bureau, Ningxia Seismological Bureau. Seismological Press, Beijing (in Chinese).

30. West M., Sa'nchez J.J., McNutt S.R., 2005. Periodically triggered seismicity at Mount Wrangell, Alaska after the Sumatra earthquake. Science 308 (5725), 1144-1146. http://dx.doi.org/10.1126/science.1112462.

31. Wyss M., 1991. Evaluation of Proposed Earthquake Precursors. Eos, Transactions American Geophysical Union 72 (38), 411. http://dx.doi.org/10.1029/90EO10300.

32. Wyss M., 1997. Second round of evaluations of proposed earthquake precursors. Pure and Applied Geophysics 149 (1), 3-16. http://dx.doi.org/10.1007/BF00945158.

33. Zhang Guomin, 2013. Selected Research Papers on Earthquake Prediction. Seismological Press, Beijing (in Chinese).

34. Zhang Peizhen, Min Wei, Deng Qidong, Mao Fengying, 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Science China Series D 48 (3), 364-375. http://dx.doi.org/ 10.1360/02yd0464.

35. Zhuo Y.Q., Guo Y.S., Ji Y.T. et al., 2013. Slip synergism of planar strike-slip fault during meta-instable state: Experimental research based on digital image correlation analysis. Science China: Earth Sciences 56 (11), 1881-1887. http://dx.doi. org/10.1007/s11430-013-4623-4.


Для цитирования:


Дзинь М., Яншуань Г., Шерман С.И. УСКОРЕННЫЙ СИНЕРГИЗМ ВДОЛЬ РАЗЛОМА: ВОЗМОЖНЫЙ ИНДИКАТОР НЕИЗБЕЖНОГО КРУПНОГО ЗЕМЛЕТРЯСЕНИЯ. Геодинамика и тектонофизика. 2014;5(2):387–399. https://doi.org/10.5800/GT-2014-5-2-0134

For citation:


Jin M., Yanshuang G., Sherman S.I. ACCELERATED SYNERGISM ALONG A FAULT: A POSSIBLE INDICATOR FOR AN IMPENDING MAJOR EARTHQUAKE. Geodynamics & Tectonophysics. 2014;5(2):387–399. (In Russ.) https://doi.org/10.5800/GT-2014-5-2-0134

Просмотров: 366


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)