Preview

Геодинамика и тектонофизика

Расширенный поиск

МАСШТАБНЫЙ ЭФФЕКТ В СЕЙСМОТЕКТОНИКЕ

https://doi.org/10.5800/GT-2014-5-2-0133

Полный текст:

Аннотация

В настоящей работе собран и проанализирован обширный ряд экспериментальных данных во всем диапазоне масштабов, который относится к сейсмотектонике и геомеханике, – от микрособытий с линейным размером очага порядка нескольких сантиметров до мегаземлетрясений. Рассмотрены закономерности изменения геометрических характеристик разноранговых разломов и трещин и их механических свойств, линейных размеров очага землетрясения, времени подготовки динамического события и сейсмической энергии.

Усреднение по всему диапазону масштабов дает соотношения, близкие к закону геометрического подобия. Более детальное рассмотрение позволяет обнаружить, что существует несколько иерархических уровней, в которых изменение параметров событий с масштабом происходит по разным законам, зачастую сильно отклоняющимся от законов подобия.

Показано, что линейные размеры L~500–1000 м являются некоторой переходной областью, которая оказывается границей между двумя диапазонами, в которых масштабные соотношения существенно разные. Следует отличать и шахтную сейсмичность, глубина очагов которой невелика.

Установлено, что для землетрясений Байкальской рифтовой системы отмечается аномальная тенденция сильного возрастания приведенной энергии, рассчитанной по величине класса события, с увеличением масштаба. В интервале моментных магнитуд от 5 до 6.3 усредненное приведенное значение сейсмической энергии превышает среднемировую величину для этого диапазона, по крайней мере, в 25 раз. Необходимо разобраться, является ли этот эффект артефактом, связанным с некорректным расчетом величины сейсмической энергии, или имеет место не объясненный пока физический эффект.

 

 

Об авторе

Г. Г. Кочарян 
Институт динамики геосфер РАН, Москва, Россия
Россия

докт. физ.-мат. наук, профессор, заведующий лабораторией 
Институт динамики геосфер РАН 
119334, Москва, Ленинский проспект, 38, корп. 1, Россия Тел.: (495) 939­75­27



Список литературы

1. Abercrombie R.E., 1995. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research 100 (B12), 24015-24036. http://dx.doi.org/10.1029/95JB02397.

2. Aki K., 1967. Scaling law of seismic spectrum. Journal of Geophysical Research 72 (4), 729-740. http://dx.doi.org/10.1029/ JZ072i004p01217.

3. Baranov S.V., German V.I., Oseev V.G., 2013. Aftershock process of 27.12.2011 Tuva Earthquake, Geofizicheskie Issledo- vaniya 14 (1), 16-30 (in Russian) [Баранов С.В., Герман В.И., Осеев В.Г. Афтершоковый процесс Тувинского землетрясения 27.12.2011 г. // Геофизические исследования. 2013. T. 14. № 1. C. 16-30].

4. Beach, A., Welbon A.I., Brockback P.J., McCallum J.E., 1999. Reservoir damage around faults: outcrop examples from the Suez Rift. Petroleum Geosciences 5 (2), 109-116. http://dx.doi.org/10.1144/petgeo.5.2.109.

5. Ben-Zion Y., 2008. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics 46 (4), RG4006. http://dx.doi.org/10.1029/2008RG 000260.

6. Ben-Zion Y., Aki K., 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bulletin of Seismological Society of America 80 (4), 971-994.

7. Ben-Zion Y., Peng Z., Lewis M., McGuire J., 2007. High resolution imaging of fault zone structures with seismic fault zone waves. Scientific Drilling, Special Issue 1, 78-79. http://dx.doi.org/10.2204/iodp.sd.s01.23.2007.

8. Ben-Zion Y., Peng Z., Okaya D., Seeber L., Armbruster J.G., Ozer N., Michael A.J., Baris S., Aktar M., 2003. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey. Geophysical Journal International 152 (3), 699-717. http://dx.doi.org/10.1046/j.1365-246X.2003.01870.x.

9. Besedina A.N., Kabychenko N.V., Kocharyan G.G., 2013. Low-magnitude seismicity monitoring in rocks. Journal of Mining Science 49 (5), 691-703. http://dx.doi.org/10.1134/S106273914905002X.

10. Blenkinsop T.G., 1989. Thickness - displacement relationships for deformation zones: discussion. Journal of Structural Ge¬ology 11 (8), 1051-1054. http://dx.doi.org/10.1016/0191-8141(89)90056-4.

11. Bradbury K.K., Barton D.C., Solum J.G., Draper S.D., Evans J.P., 2007. Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models. Geosphere 3 (5), 299-318. http://dx.doi.org/10.1130/GES00076.!.

12. Brune J., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research 75 (26), 4997-5009. http://dx.doi.org/10.1029/JB075i026p04997.

13. Chen K.H., Nadeau R.M., Rau R.-J., 2007. Towards a universal rule on the recurrence interval scaling of repeating earth¬quakes? Geophysical Research Letters 34 (16), L16308. http://dx.doi.org/10.1029/2007GL030554.

14. Chester F.M., Chester J.S., 1998. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas sys¬tem, California. Tectonophysics 295 (1-2), 199-221. http://dx.doi.org/10.1016/S0040-1951(98)00121-8.

15. Childs C., Manzocchi T., Walsh J.J., Bonson C.G., Nicol A., Schopfer M.P.J., 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology 31 (2), 117-127. http://dx.doi.org/10.1016Zj.jsg.2008.08. 009.

16. Choy G.L., Boatwright J.L., 1995. Global patterns of radiated seismic energy and apparent stress. Journal of Geophysical Research 100 (B9), 18205-18228. http://dx.doi.org/10.1029/95JB01969.

17. Cochran E.S., Li Y.-G., Shearer P.M., Barbot S., Fialko Y., Vidale J.E., 2009. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 37 (4), 315-318. http://dx.doi.org/10.1130/G25306A.1.

18. Convers J.A., Newman A.V., 2011. Global evaluation of large earthquake energy from 1997 through mid 2010. Journal Geo¬physical Research 116 (B8), B08304. http://dx.doi.org/10.1029/2010JB007928.

19. Dieterich J., 1978. Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics 116 (4-5), 790¬806. http://dx.doi.org/10.1007/BF00876539.

20. Dobrynina A.A., 2011. Seismic Quality Factor of the Lithosphere and Source Parameters of the Baikal Rift System Earth¬quakes. Candidate of Physical and Mathematical Sciences Dissertation. Irkutsk, 251 p. (in Russian) [Добрынина А.А. Добротность литосферы и очаговые параметры землетрясений Байкальской рифтовой системы: Дис. ... канд. физ.-мат. наук. Иркутск, 2011. 251 с.].

21. Domanski B., Gibowicz S., 2008. Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland. Acta Geophysica 56 (2), 324-343. http://dx.doi.org/10.2478/s11600-008-0014- 1.

22. Elliott D., 1976. The energy balance and deformation mechanisms of thrust sheets. Philosophical Transactions of the Royal Society of London A 283 (1312), 289-312. http://dx.doi.org/10.1098/rsta.1976.0086.

23. Evans J.P., 1990. Thickness-displacement relationships for fault zones. Journal of Structural Geology 12 (8), 1061-1065. http://dx.doi.org/10.1016/0191-8141(90)90101-4.

24. Fedotov S.A., 1963. About the S-wave absorption in upper mantle and the energy classification of close earthquakes with intermediate source depths. Izvestiya Akademii Nauk USSR. Seriya geofizicheskaya (6), 820-849 (in Russian) [Федотов С.А. О поглощении поперечных сейсмических волн в верхней мантии и энергетической классификации близких землетрясений с промежуточной глубиной очага // Известия АН СССР. Серия геофизическая. 1963. № 6. С. 820¬849].

25. Fossen H., Hesthammer J., 2000. Possible absence of small faults in the Gullfaks Field, northern North Sea: implications for downscaling of faults in some porous sandstones. Journal of Structural Geology 22 (7), 851-863. http://dx.doi.org/ 10.1016/S0191-8141(00)00013-4.

26. Gibowicz S., Young R., Talebi S., Rawlence D., 1991. Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than 2. Bulletin of the Seismological Society of America 81 (4), 1157-1182.

27. Hanks T.C., Bakun W.H., 2008. M-logA observations for recent large earthquakes. Bulletin of the Seismological Society of America 98 (1), 490-494. http://dx.doi.org/10.1785/0120070174.

28. Haskell N.A., 1964. Total energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismo¬logical Society of America 54 (6A), 1811-1841.

29. Heermance R., Shipton Z.K., Evans J.P. 2003. Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu fault, Taiwan. Bulletin of the Seismological Society of America 93 (3), 1034-1050. http://dx. doi.org/10.1785/0120010230.

30. Henry C., Das S., 2001. Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophysical Journal International 147 (2), 272-293. http://dx.doi.org/10.1046/j.1365-246X.2001. 00522.x.

31. Hua W., Chen Z., Zheng S., 2013. Source parameters and scaling relations for reservoir induced seismicity in the Longtan reservoir area. Pure and Applied Geophysics 170 (5), 767-783. http://dx.doi.org/10.1007/s00024-012-0459-7.

32. Hull J., 1988. Thickness-displacement relationships for deformation zones. Journal of Structural Geology 10 (4), 431-435. http://dx.doi.org/10.1016/0191-8141(88)90020-X. '

33. Ide S., Beroza G., 2001. Does apparent stress vary with earthquake size? Geophysical Research Letters 28 (17), 3349-3352. http://dx.doi.org/10.1029/2001GL013106.

34. Ide S., Beroza G.C., Prejean S.G., Ellsworth W.L., 2003. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research 108 (B5), 2271. http://dx.doi.org/10.1029/2001JB001617.

35. Jahnke G., Igel H., Ben-Zion Y., 2002. Three-dimensional calculations of fault-zone-guided waves in various irregular struc¬tures. Geophysical Journal International 151 (2), 416-426. http://dx.doi.org/10.1046/j.1365-246X.2002.01784.x.

36. Jeppson T.N., Bradbury K.K., Evans J.P., 2010. Geophysical properties within the San Andreas Fault Zone at the San An¬dreas fault observatory at depth and their relationships to rock properties and fault zone structure. Journal of Geophysical Research 115 (B12), B12423. http://dx.doi.org/10.1029/2010JB007563.

37. Kanamori H., Anderson D.L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismo¬logical Society of America 65 (5), 1073-1095.

38. Kanamori H., Brodsky E.E., 2004. The physics of earthquakes. Reports on Progress in Physics 67 (8), 1429-1496. http://dx. doi.org/10.1088/0034-4885/67/8/R03.

39. Kanamori H., Mori J., Hauksson E., Heaton T.H., Hutton L.K., Jones L.M., 1993. Determination of earthquake energy re¬lease and ML using TERRAscope. Bulletin of the Seismological Society of America 83 (2), 330-346.

40. Keilis-Borok V.I., 1959. On the estimation of the displacement in an earthquake source and source dimensions. Annals of Geophysics 12 (2), 205-214. http://dx.doi.org/10.4401/ag-5718.

41. Klyuchevskii A.V., Demjanovich V.M., 2002. Source amplitude parameters of strong earthquakes in the Baikal seismic zone. Izvestiya, Physics of the Solid Earth 38 (2), 139-148.

42. Kocharyan G.G., 2010. Fault zone as a nonlinear mechanical system. Fizicheskaya Mezomechanika 13 (Special Issue), 5-17 (in Russian) [Кочарян Г.Г. Разломная зона как нелинейная механическая система // Физическая мезомеханика. 2010. Т. 13. Специальный выпуск. С. 5-17].

43. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2010. Seismic picture of a fault zone. What can be gained from the analysis of the fine patterns of spatial distribution of weak earthquake centers? Geodynamics & Tectonophysics 1 (4), 419-440. http://dx.doi.org/10.5800/GT-2010-1-4-0027.

44. Kocharyan G.G., Kishkina S.B., Ostapchuk A.A., 2011. Seismogenic width of a fault zone. Doklady Earth Sciences 437 (1), 412-415. http://dx.doi.org/10.1134/S1028334X11030147.

45. Kocharyan G.G., Kulyukin A.A., Markov V.K., Markov D.V., Pernik L.M., 2008. Critical deformation rate of fracture zones. Doklady Earth Sciences 418 (1), 132-135. http://dx.doi.org/10.1134/S1028334X08010297.

46. Kocharyan G.G., Ostapchuk A.A., Markov V.K., Pavlov D.V., 2014. Some questions of geomechanics of the faults in the continental crust. Izvestiya, Physics of the Solid Earth 50 (3), 355-366. http://dx.doi.org/10.1134/S1069351314030021.

47. Kocharyan G.G., Pavlov D.V., 2007. Disruption and healing of stress localization zones in rock. Fizicheskaya Mezome¬chanika 10 (1), 5-18 (in Russian) [Кочарян Г.Г., Павлов Д.В. Нарушение и залечивание зон локализации деформаций в массиве горных пород // Физическая мезомеханика. 2007. Т. 10. № 1. С. 5-18].

48. Kocharyan G.G., Pavlov D.V., Ostapchuk A.A. 2013. Modes of faults deformation and trigger potential of seismic vibrations. In: Adushkin V.V., Kocharyan G.G. (Eds.) Triggering effects in geosystems (Moscow, June 18-21, 2013): papers of Se¬cond All-Russian Workshop Meeting. Publishing house "GEOS", Moscow, p. 35-46 (in Russian) [Кочарян Г.Г., Павлов Д.В., Остапчук А.А. Режим деформирования разломных зон и инициирующий потенциал сейсмических колебаний // Триггерные эффекты в геосистемах: Материалы 2-го Всероссийского семинар-совещания (Москва, 18-21 июня 2013 г.). М.: ГЕОС, 2013. С. 35-46].

49. Kocharyan G.G., Spivak A.A., 2003. The Dynamics of Rock Deformation. Publishing house "Akademkniga", Moscow, 423 p. (in Russian) [Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: ИКЦ «Академкнига», 2003. 423 с.].

50. Kostrov B.V., Das S., 1986. On the elastic contact modeling of faults with variable stiffness. Geophysical Monograph 37: Earthquake Source Mechanics. American Geophysical Union, New York, p. 65-71.

51. Kostyuchenko V.N., Kocharyan G.G., Pavlov D.V., 2002. Strain characteristics of interblock gaps of different scales. Physical Mesomechanics 5 (5-6), 21-38.

52. Krantz R.W., 1988. Multiple fault sets and three-dimensional strain: theory and application. Journal of Structural Geology 10 (3), 225-237. http://dx.doi.org/10.1016/0191-8141(88)90056-9.

53. Kuksenko V.S., 1986. Transition model from micro- to macrodestruction of solids. In: Collected articles of the First Soviet Workshop "Physics of strength and plasticity". Nauka, Leningrad, p. 36-41 (in Russian) [Куксенко В.С. Модель пере¬хода от микро- к макроразрушению твердых тел // Сборник докладов 1-й Всесоюзной школы-семинара «Физика прочности и пластичности». Л.: Наука, 1986. С. 36-41].

54. Kurlenya M.V., Oparin V.N., 1999. Problems of nonlinear geomechanics. Part 1. Journal of Mining Science 35 (3), 216-230. http://dx.doi.org/10.1007/BF02550237.

55. Kwiatek G., Plenkers K., Dresen G., JAGUARS Research Group, 2011. Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations. Bulletin of the Seismological Society of Ame¬rica 101 (6), 2592-2608. http://dx.doi.org/10.1785/0120110094.

56. Lapusta N., Rice J.R., 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Journal of Geophysical Research 108 (B4), 2205. http://dx.doi.org/10.1029/2001JB000793.

57. Levi K.G., Sherman S.I., 1995. Applied Geodynamic Analysis. Musee Royal de L'Afrique Centrale. Tervuren. Belgique

58. annales. Sciences Geologiques, V. 100, 133 p.

59. Li Y.G. Chen P., Cochran E.S., Vidale J.E., Burdette T., 2006. Seismic evidence for rock damage and healing on the San Andreas Fault associated with the 2004 M6 Parkfield Earthquake. Bulletin of the Seismological Society of America 96 (4B), 349-363. http://dx.doi.org/10.1785/0120050803.

60. Li Y.G., Leary P., Aki K., Malin P., 1990. Seismic trapped modes in the Oroville and San Andreas fault zones. Science 249 (4970), 763-766. http://dx.doi.org/10.1126/science.249.4970.763.

61. Li Y.G., Vidale J.E., Aki K., Xu F., 2000. Depth-dependent structure of the Landers fault zone from trapped waves generated by aftershocks. Journal of Geophysical Research 105 (B3), 6237-6254. http://dx.doi.org/10.1029/1999JB900449.

62. Li Y.G., Vidale J.E., Cochran E.S., 2004. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophysical Research Letters 31 (12), L12S06. http://dx.doi.org/10.1029/2003GL019044.

63. Lin W., Conin M., Moore J.C., Chester F.M., Nakamura Y., Mori J.J., Anderson L., Brodsky E.E., Eguchi N., Expedition 343 Scientists, 2013. Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science 339 (6120), 687-690. http://dx.doi.org/10.1126/science.1229379.

64. Madariaga R., 2011. Earthquake Scaling laws. In: R.A. Meyers (Ed.), Extreme environmental events: complexity in forecasting and early warning. V.1. Springer, p. 364-383. http://dx.doi.org/10.1007/978-1-4419-7695-6_22.

65. Mai P.M., Beroza G., 2000. Source scaling properties from finite-fault rupture models. Bulletin of the Seismological Society of America 90 (3), 604-615. http://dx.doi.org/10.1785/0119990126.

66. Mair K., Frye K.M., Marone C., 2002. Influence of grain characteristics on the friction of granular shear zones. Journal of Geophysical Research 107 (B10), 2219. http://dx.doi.org/10.1029/2001JB000516.

67. Malovichko A.A. (Ed.), 2006. Earthquakes in Russia in 2003. GS RAS, Obninsk, 112 p. (in Russian) [Землетрясения России в 2003 году / Под ред. А.А. Маловичко. Обнинск: ГС РАН, 2006. 112 с.].

68. Malovichko A.A. (Ed.), 2010. Earthquakes in Russia in 2008. GS RAS, Obninsk, 112 p. (in Russian) [Землетрясения России в 2008 году / Под ред. А.А. Маловичко. Обнинск: ГС РАН, 2010. 224 с.].

69. Malovichko A.A., Malovichko D.A., 2010. Estimation of power and strain focal parameters of seismic events. In: Mel'nikov N.N. (Ed.) Methods and systems of seismic deformation monitoring of technogeneous earthquakes and rock bump. V. 2. Novosibirsk, p. 66-92 (in Russian) [Маловичко А.А., Маловичко Д.А. Оценка силовых и деформационных характеристик очагов сейсмических событий // Методы и системы сейсмодеформационного мониторинга техногенных землетрясений и горных ударов. Т. 2. Новосибирск, 2010. С. 66-92].

70. Malovichko A.A., Malovichko D.A., Dyagilev R.A., 2008. Seismological monitoring in the mines of the Verkhnekamskoye deposit of potash-salts. Gornyy zhurnal (10), 25-29 (in Russian) [Маловичко А.А., Маловичко Д.А., Дягилев Р.А. Сейсмологический мониторинг на рудниках Верхнекамского месторождения калийных солей // Горный журнал. 2008. № 10. С. 25-29].

71. Manighetti I., Campillo M., Bouley S., Cotton F., 2007. Earthquake scaling, fault segmentation and structural maturity. Earth and Planetary Science Letters 253 (3-4), 429-438. http://dx.doi.org/10.1016/j.epsl.2006.11.004.

72. Marone C., Vidale J.E., Ellsworth W.L., 1995. Fault healing inferred from time dependent variations in source properties of repeating earthquakes. Geophysical Research Letters 22 (22), 3095- 3098. http://dx.doi.org/10.1029/95GL03076.

73. Mayeda K., Gok R., Walter W.R., Hofstetter A, 2005. Evidence for non-constant energy/moment scaling from coda derived source spectra. Geophysical Research Letters 32 (10), L10306. http://dx.doi.org/10.1029/2005GL022405.

74. Mayeda K., Walter W.R., 1996. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. Journal of Geophysical Research 101 (B5), 11195-11208. http://dx.doi.org/10.1029/96JB00 112.

75. Mitchell T.M., Faulkner D.R., 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault zone, northern Chile. Journal of Structural Geology 31 (8), 802-816. http://dx.doi.org/10.1016/j.jsg.2009.05.002.

76. Mizuno T., Nishigami K., 2006. Deep structure of the Nojima Fault, southwest Japan, estimated from borehole observations of fault-zone trapped waves. Tectonophysics 417 (3-4), 231-247. http://dx.doi.org/10.1016/j.tecto.2006.01.003.

77. Muhuri S.K., Dewers T.A., Scott Jr. T.E., 2003. Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology 31 (10), 881-884. http://dx.doi.org/10.1130/G1960L1.

78. Muraoka H., Kamata H., 1983. Displacement distribution along minor fault traces. Journal of Structural Geology 5 (5), 483¬495. http://dx.doi.org/10.1016/0191-8141(83)90054-8.

79. Nadeau R.M., Foxall W., McEvilly T.V., 1995. Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science 267 (5197), 503-507. http://dx.doi.org/10.1126/science.267.5197.503.

80. Nadeau R.M., Johnson L.R., 1998. Seismological studies at Parkfield VI: Moment release rates and estimates of source pa¬rameters for small repeating earthquake. Bulletin of the Seismological Society of America 88 (3), 790-814.

81. Nazarova L.A., Nazarov L.A., Dyadkov P.G., Kozlova M.P., Ilin V.P., Gurieva Ya.L., 2010. Estimation of focal parameters of a forthcoming earthquake from day surface deformation. Fizicheskaya Mezomechanika 13 (Special Issue), 23-28 (in Russian) [Назарова Л.А., Назаров Л.А., Дядьков П.Г., Козлова М.П., Ильин В.П., Гурьева Я.Л. Оценка фокальных параметров предстоящего землетрясения по деформациям дневной поверхности // Физическая мезомеханика. 2010. Т. 13. Специальный выпуск. С. 23-28].

82. Oye V., Bungum H., Roth M., 2005. Source parameters and scaling relations for mining-related seismicity within the Py- hasalmi ore mine, Finland. Bulletin of the Seismological Society of America 95 (3), 1011-1026. http://dx.doi.org/10.1785/ 0120040170.

83. Papazachos B.C., Scordilis E.M., Panagiotopoulos D.G., Papazachos C.B., Karakaisis G.F. 2004. Global relations between seismic fault parameters and moment magnitude of earthquakes. Bulletin of the Geological Society of Greece 36, 1482¬1489.

84. Peacock D.C.P., Sanderson D.J., 1991. Displacement and segment linkage and relay ramps in normal fault zones. Journal of Structural Geology 13 (6), 721-733. http://dx.doi.org/10.1016/0191-8141(91)90033-F.

85. Peng Z., Gomberg J., 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature geoscience 3 (9), 599-607. http://dx.doi.org/10.1038/ngeo940.

86. Rats M.V., Chernyshev S.N., 1970. Fracturing and properties of fractured rocks. Publishing house "Nedra", Moscow, 160 p. (in Russian) [Рац М.В., Чернышев С.Н. Трещиноватость и свойства трещиноватых горных пород. М.: Недра, 1970. 160 с.].

87. Rautian T.G., 1964. About determination of earthquake energy at the distances up to 3000 km. Experimental seismicity. Pro¬ceedings of IFE AS USSR (32(199)), 88-93 (in Russian) [Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. Труды ИФЗ АН СССР. 1964. № 32 (199). С. 88-93].

88. Rodionov V.N., Adushkin V.V., Kostyuchenko V.N., 1971. The Mechanical Effect of Underground Explosion. Publishing house "Nedra", Moscow, 224 p. (in Russian) [Родионов В.Н., Адушкин В.В., Костюченко В.Н. Механический эффект подземного взрыва. М.: Недра, 1971. 224 с.].

89. Romanowicz B., Ruff L.J., 2002. On moment-length scaling of large strike slip earthquakes and the strength of faults. Geophysical Research Letters 29 (12), 1604. http://dx.doi.org/10.1029/2001GL014479.

90. Ruzhich V.V., Medvedev V.Ya., Ivanova L.A., 1990. Healing of seismogenic faults and recurrence of earthquakes. In: Seismicity of Baikal rift. Prognostic aspects. Publishing house "Nauka", Novosibirsk, p. 44-50 (in Russian) [Ружич В.В., Медведев В.Я., Иванова Л.А. Залечивание сейсмогенных разрывов и повторяемость землетрясений // Сейсмичность Байкальского рифта. Прогностические аспекты. Новосибирск: Наука, 1990. С. 44-50].

91. Ruzhich V.V., Sherman S.I., 1978. Estimation of relationship between length and value of disruptive displacements. In: Dy¬namics of the Earth crust of the East Siberia. Publishing house "Nauka", Siberian Branch. Novosibirsk, p. 52-57 (in Russian) [Pужич В.В., Шерман С.И. Оценка связи между длиной и амплитудой разрывных смещений // Динамика земной коры Восточной Сибири. Новосибирск: Наука. СО, 1978. С. 52-57].

92. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of geophysical medium and seismic process. Publish¬ing house "Nauka", Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизической среды и сейсмический процесс. М.: Наука, 1987. 100 с.].

93. Sadovsky M.A., Kocharyan G.G., Rodionov V.N., 1988. About the mechanics of block rock massif. Doklady AN USSR 302 (2), 306-307 (in Russian) [Садовский М.А., Кочарян Г.Г., Родионов В.Н. О механике блочного горного массива // Доклады АН СССР. 1988. Т. 302. № 2. С. 306-307].

94. Savage H.M., Brodsky E.E., 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research 116 (B3), B03405. http://dx.doi.org/10.1029/ 2010JB007665.

95. Scholz C.H., 1982. Scaling laws for large earthquakes: consequences for physical models. Bulletin of the Seismological Soci¬ety of America 72 (1), 1-14.

96. Scholz C.H. 1990. The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York, 439 p.

97. Scholz C.H., 1994. Reply to comments on "A reappraisal of large earthquake scaling". Bulletin of the Seismological Society of America 84 (5), 1677-1678.

98. Scholz C.H., 1988. Earthquakes and friction laws. Nature 391 (6662), 39-42. http://dx.doi.org/10.1038/34097.

99. Seminskiy K.Zh., 2003. Internal Structure of the Continental Fault Zones. Tectonophysical Aspect. Publishing house "Geo", Novosibirsk, 243 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, Филиал «Гео», 2003. 243 с.].

100. Sherman S.I., 1977. Physucal Laws of Fault Evolution in the Earth Crust. Publishing house "Nauka", Novosibirsk, 103 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 103 с.].

101. Sherman S.I., 2009. A tectonophysical model of a seismic zone: Experience of development based on the example of the Baikal rift system. Izvestiya, Physics of the Solid Earth 45 (11), 938-951. http://dx.doi.org/10.1134/S1069351309110020.

102. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental litho¬sphere. Geodynamics & Tectonophysics 4 (2), 83-117. http://dx.doi.org/10.5800/GT-2013-4-2-0093.

103. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Publishing house "Nauka", Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, СО АН СССР, 1983. 110 с.].

104. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Strike Slip Zones. Publishing house "Nauka", Siberian Branch, Novosibirsk, V. 1, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж. Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. Сибирское отделение, 1991. Т. 1. 261 с.].

105. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1992. Faulting in the Lithosphere. Tensile Stress Zones. Publishing house "Nauka", Siberian Branch, Novosibirsk, V. 2, 227 p. (in Russian) [Шерман С.И., Семинский К.Ж. Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука. Сибирское отделение, 1992. Т. 2. 227 с.].

106. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1994. Faulting in the Lithosphere. Compression Zones. Publishing house "Nauka", Siberian Branch, Novosibirsk, V. 3, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж. Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сжатия. Новосибирск: Наука. Сибирское отделение, 1994. Т. 3. 262 с.].

107. Shipton Z.K., Cowie P.A., 2001. Damage zone and slip-surface evolution over |im to km scales in high-porosity Navajo sandstone, Utah. Journal of Structural Geology 23 (12), 1825-1844. http://dx.doi.org/10.1016/S0191-8141(01)00035-9.

108. Sibson R.H., 2003. Thickness of the seismic slip zone. Bulletin of the Seismological Society of America 93 (3), 1169-1178. http://dx.doi.org/10.1785/0120020061.

109. Sibson R.H., McMoore J., Rankin R.H., 1975. Seismic pumping - hydrothermal fluid transport mechanism. Journal of Geological Society 131 (6), 653-659. http://dx.doi.org/10.1144/gsjgs.13L6.0653.

110. Steinberg V.V., 1983. About the focal parameters and seismic effect of earthquakes. Izvestiya Academii Nauk USSR. Fizika Zemli (7), 49-64 (in Russian) [Штейнберг В.В. О параметрах очагов и сейсмическом эффекте землетрясений // Известия АН СССР. Физика Земли. 1983. № 7. С. 49-64].

111. Stork A.L., Ito H., 2004. Source parameter scaling for small earthquakes observed at the Western Nagano 800-m-Deep Borehole, Central Japan. Bulletin of the Seismological Society of America 94 (5), 1781-1794. http://dx.doi.org/10.1785/ 012002214.

112. Tadokoro K., Ando M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting. Geophysi¬cal Research Letters 29 (4), 1047. http://dx.doi.org/10.1029/2001GL013644.

113. Tenthorey E., Cox S.F., Todd H.F., 2003. Evolution of strength recovery and permeability during fluid-rock reaction in ex¬perimental fault zones. Earth and Planetary Science Letters 206 (1-2), 161-172. http://dx.doi.org/10.1016/S0012- 821X(02)01082-8.

114. Urbancic T.I., Young R.P., 1993. Space-time variations in source parameters of mining-induced seismic events with M<0. Bulletin of the Seismological Society of America 83 (2), 378-397.

115. Venkataraman A., Kanamori H., 2004. Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research 109 (B5), B05302. http://dx.doi.org/10.1029/2003JB002549.

116. Vidale J.E., Li Y.G., 2003. Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature 421 (6922), 524-526. http://dx.doi.org/10.1038/nature01354.

117. Villemin T., Angelier J., Sunwoo C., 1995. Fractal distribution of fault length and offsets: Implications of brittle deformation evaluation - the Lorraine Coal Basin. In: Barton C. and LaPointe P. (Eds.). Fractals in the Earth Sciences. Plenum Press, New York, p. 205-226. http://dx.doi.org/10.1007/978-1-4899-1397-5_10.

118. Walsh J.J., Nicol A., Childs C., 2002. An alternative model for the growth of faults. Journal of Structural Geology 24 (11), 1669-1675. http://dx.doi.org/10.1016/S0191-8141(01)00165-1.

119. Walsh J.J., Watterson J., 1987. Distribution of cumulative displacement and of seismic slip on a single normal fault surface. Journal of Structural Geology 9 (8), 1039-1046. http://dx.doi.org/10.1016/0191-8141(87)90012-5.

120. Walsh J.J., Watterson J., 1988. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology 10 (3), 239-247. http://dx.doi.org/10.1016/0191-8141(88)90057-0.

121. Watterson. J., 1986. Fault dimensions, displacements and growth. Pure and Applied Geophysics 124 (1-2), 365-373. http:// dx.doi.org/10.1007/BF00875732.

122. Web site of Kamchatka Branch of Geophysical Survey RAS. Available from: http://www.emsd.ru/.

123. Web site of Baikal Branch GS RAS. Available from: http://www.seis-bykl.ru/.

124. Web site of Kazakhstan National Data Center. Available from: http://www.kndc.kz.

125. Web site of Harvard Centroid-Moment-Tensor (CMT) Project. Available from: http://www.globalcmt.org/.

126. Web site of National Earthquake Information Center. Available from: http://www.neic.usgs.gov/

127. Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.

128. Yamada T., Mori J. J., Ide S., Abercrombie R.E., Kawakata H., Nakatani M., Iio Y., Ogasawara H., 2007. Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. Journal of Geophysical Research 112 (B03), B03305. http://dx.doi.org/10.1029/2006JB004553.

129. Zoback M.D., Hickman S., Ellsworth W.L., 2008. In situ fault zone observations from SAFOD, EarthScope Onsite Newsletter, winter. Available from: http://www.earthscope.org/es_doc/onsite/onsite_winter08.pdf.

130.


Для цитирования:


Кочарян  Г.Г. МАСШТАБНЫЙ ЭФФЕКТ В СЕЙСМОТЕКТОНИКЕ. Геодинамика и тектонофизика. 2014;5(2):353–385. https://doi.org/10.5800/GT-2014-5-2-0133

For citation:


Kocharyan  G.G. SCALE EFFECT IN SEISMOTECTONICS. Geodynamics & Tectonophysics. 2014;5(2):353–385. (In Russ.) https://doi.org/10.5800/GT-2014-5-2-0133

Просмотров: 528


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)