Preview

Geodynamics & Tectonophysics

Advanced search

FAULTING IN THE LITHOSPHERE: THE 35TH ANNIVERSARY OF THE IRKUTSK SCHOOL OF TECTONOPHYSICS

https://doi.org/10.5800/GT-2014-5-2-0132

Abstract

The history of tectonophysical studies in Irkutsk began in the 1950s at the initiative of Prof. V.N. Danilovich. Tectonophysics as a new scientific field in geology was enthusiastically supported by research institutes of the actively develo­ping Siberian Branch of the USSR Academy of Sciences, including the Institute of the Earth's Crust (IEC). In late 1950s, V.N. Danilovich, G.V. Charushin, O.V. Pavlov, P.M. Khrenov, S.I. Sherman and other scientists began to conduct large-scale studies of faults and rock fracturing with application of methods of structural analysis of fault tectonics and taking into account types of physical and mechanical destruction of the crust. In 1979, the IEC Scientific Council reviewed the initiative of Prof. S.I. Sherman, who was supported by Academician N.A. Logachev and Doctor of Geology and Mineralogy O.V. Pavlov, and approved the decision to establish the Laboratory of Tectonophysics, that has been and is the only scientific research team of the kind in the territory of Russia eastward of the Urals and, in fact, the second in the Russian Federation. Its studies are based on concepts dealing with physical regularities of crustal faulting that are described in the monograph published by S.I. Sherman [Sherman, 1977], three co-authored volumes of Faulting in the Lithosphere [Sherman et al., 1991, 1992, 1994] and other scientific papers. These publications have consolidated results of studies conducted by the team of researchers from the Laboratory, which can be called the Irkutsk school of tectonophysics. On the eve of the 21st century, the Laboratory successfully extended application of physics of destruction of materials and mathematical methods of analysis to studies of structural patterns of faults varying in ranks in the crust and the upper lithosphere.

We conducted comprehensive studies of tectonophysical regularities of formation of large crustal faults, pioneered in establishing quantitative relationships between main parameters of faults, i.e. length and depth, length and amplitude of displacement, length and density, and estimated the factors determining such parameters. A model showing the fault structure was proposed with account of changes of physical properties of the crust with depth. It was shown that faulting in the crust follows the laws of deformation and destruction of Maxwell body.

With accumulation of the knowledge on regularities of faulting in the lithosphere, analyses the state of stresses in the lithosphere has become prioritised, and this is one of the top challenges in geodynamics and tectonophysics. Tectonophysics from Irkutsk published the first map of the state of stresses of the Baikal rift zone and proposed new concepts for studying crustal stresses by structural geological methods. Based on such concepts, a new map of the state of stresses of the upper lithosphere was constructed.

Studies of faulting included researches of areas around virtual axes of faults and variations of sizes of such areas, and a concept of an area of dynamic influence of large lithospheric faults was proposed. It is established that internal patterns of areas of dynamic influence of faults are composed of zones that can be revealed both laterally and in depth, and such zonal patterns depend on the degree of tectonical and dynamo-metamorphical transformation of the rocks.

The internal structure of continental fault zones was studied, and three main disjunctive stages were revealed, each corresponding to a specific type of deformation behaviour of the medium, its state of stresses, pathogenesis of faults varying in ranks, and variations of parameters in space and time.

Triple paragenesises of fractures were revealed and analysed for a number of regions, and such studies provided the basis to propose a method of specialized mapping of the crust, which provides for determination of locations of fault zones and their boundaries, conditions of their formation and major specific features of their internal structures. This method can be effectively applied within the framework of conventional geological surveys of any scale.

Results of studies of tectonic divisibility of the Earth based on advanced tectonophysical concepts were referred to establish the zone-block structure (ZBS) of the lithosphere. Analyses of faults at various scales showed a strict hierarchy of ranks in the ZBS of the lithosphere in Central Asia, and actual characteristics of 11 hierarchic levels (from global to local) were revealed and described in quantitative terms. With reference to the ZBS concept, the Baikal rift was studied, and the soil radon concentration pattern of Pribaikalie was analysed and its main spatial and temporal regularities were revealed.

Comprehensive geological, structural, tectonophysical and geoelectrical studies were conducted in the Cenozoic and Mesozoic basins of Pribaikalie and Transbaikalie, and results were consolidated and published. The fault-block patterns, the deep structure, the state of stresses and seismicity of the crust were studied in a number of areas in the region.

Complex tectonophysical studies were initiated in the Yakutian diamond-bearing province to reveal structural factors that control the kimberlite locations, and the first results were reported. By applying tectonophysical methods, it was established that periods of formation of kimberlite bodies are related to stages of formation and activation of the fault pattern of the platform cover. A pioneering conclusion was stated that in the structural control over kimberlite magmatism of the Siberian platform, the dominant role is played by fault zones of the orthogonal network, which were activated in the regime of alternating-sign displacements at different stages of the platform's development in the Paleozoic and Mesozoic.

Physical modelling experiments using an original installation were conducted, and, among its main achievements, an important result is modelling of the process of formation of the Baikal rift zone (BRZ) by an elasto-plastic model in conformity with criteria of similarity. The Shanxi rift system was also modelled, and its physical modelling study was conducted jointly with scientists from China under the Russian-Chinese project supported by the Russian Foundation for Basic Research.

Besides, the article informs about commencement of original experimental studies of deformation waves in elasto-plastic mediums and describes objectives of tectonophysical studies for the nearest future.

 

About the Authors

S. I. Sherman
Institute of the Earth’s Crust, SB RAS, Irkutsk, Russia   
Russian Federation

Academician of the Russian Academy of Natural Sciences, 
Doctor of Geology and Mineralogy, Professor, Chief Researcher 
Institute of the Earth’s Crust, Siberian Branch of RAS 
128 Lermontov street, Irkutsk 664033, Russia 
Tel.: (3952)428261



K. Zh. Seminsky
Institute of the Earth’s Crust, SB RAS, Irkutsk, Russia   
Russian Federation

докт. геол.­мин. наук, зав. лабораторией тектонофизики 
Институт земной коры СО РАН 
664033, Иркутск, ул. Лермонтова, 128, Россия 
Тел.: 8(3952)423027



S. A. Bornyakov 
Institute of the Earth’s Crust, SB RAS, Irkutsk, Russia   
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher 
Institute of the Earth’s Crust, Siberian Branch of RAS 
128 Lermontov street, Irkutsk 664033, Russia 



References

1. Adamovich A.N., Sherman S.I., Ivanovo S.V., 2002. Mathematical simulation of dynamics of the state of stresses of the lithosphere and its relative destruction at the stage of development of main structure of the Baikal rift zone. In: Physical basis for prediction of destruction of rocks. Proceedings of the 1st International Workshop. Krasnoyarsk, p. 283-291 (in Russian) [Адамович А.Н., Шерман С.И., Иванова С.В. Математическое моделирование динамики напряженного состояния литосферы и ее относительной деструкции на стадии развития основных структур Байкальской рифтовой зоны // Физические основы прогнозирования разрушения горных пород: Материалы 1-й международной школы-семинара. Красноярск, 2002. С. 283-291].

2. Bornyakov S.A., 1988. Dynamics of development of destruction zone of inter-plate margins (results of modelling). Geologiya i Geofizika (6), 3-10 (in Russian) [Борняков С.А. Динамика развития деструктивных зон межплитных границ (результаты моделирования) // Геология и геофизика. 1988. № 6. С. 3-10].

3. Bornyakov S.A., 1990. Quantitative analysis of parameters of shear faults varying in scale. Geologiya i Geofizika (9), 34-42 (in Russian) [Борняков С.А. Количественный анализ параметров разномасштабных сдвигов (по результатам моделирования) // Геология и геофизика. 1990. № 9. С. 34-42].

4. Danilovich V.N., 1953. Fundamentals of Theory of Deformation of Geological Bodies. Guidebook. Irkutsk Publishing House, Irkutsk, 101 p. (in Russian) [Данилович В.Н. Основы теории деформации геологических тел. Учебное руководство. Иркутск: Иркутское кн. изд-во, 1953. 101 с.].

5. Duchkov A.D., Lysak S.V., Golubev V.A., Dorofeeva R.P., Sokolova L.S., 1999. Heat flow and geothermal field of the Baikal region. Geologiya i geofizika (Russian Geology and Geophysics) 40 (3), 287-303.

6. Gladkov A.S., Bornyakov S.A., Manakov A.V., Matrosov V.A., 2008. Tectonophysical Studies in Diamond Prospecting. Nauchny Mir, Moscow, 175 p. (in Russian) [Гладков А.С., Борняков С.А., Манаков А.В., Матросов В.А. Тектонофизические исследования при алмазопоисковых работах. М.: Научный мир, 2008. 175 с.].

7. Gorbunova E.A., Sherman S.I., 2012. Slow deformation waves in the lithosphere: Registration, parameters, and geodynamic analysis (Central Asia). Russian Journal of Pacific Geology 6 (1), 13-20. http://dx.doi.org/10.1134/S1819714012 01006X.

8. Gorbunova E.A., Sherman S.I., 2013. Geo-informational system for recording deformation waves in seismically active zones of lithosphere. State Registration Certificate of Computer Software No. 2013612772 of 13 March 2013 (in Russian) [Горбунова Е.А., Шерман С.И. Геоинформационная система фиксирования деформационных волн в сейсмоактивных зонах литосферы. Свидетельство о государственной регистрации программы для ЭВМ № 2013612772 от 13 марта 2013 г.].

9. Leonov Yu.G., Strakhov V.N. (Eds.), 2000. M.V. Gzovsky and Development of Tectonophysics. Nauka, Moscow, 350 p. (in Russian) [Гзовский М.В. и развитие тектонофизики / Отв. ред. Ю.Г. Леонов, В.Н. Страхов. М.: Наука, 2000. 350 с.].

10. Levi K.G., 1991. Neotectonic Movements in Seismically Active Zones of the Lithosphere. Tectonophysical Analysis. Nauka Publishing House of SB RAS, Novosibirsk, 166 p. (in Russian) [Леви К.Г. Неотектонические движения в сейсмоактивных зонах литосферы. Тектонофизический анализ. Новосибирск: Наука. СО РАН, 1991. 166 с.].

11. Levi K.G., Sherman S.I., 1995. Applied Geodynamic Analysis. Musee Royal de L'Afrique Centrale. Tervuren. Belgique annales. Sciences Geologiques, V. 100, 133 p.

12. Lobatskaya R.M., 1987. Structural Zonation of Faults. Nedra, Moscow, 128 p. (in Russian) [Лобацкая Р.М. Структурная зональность разломов. М.: Недра, 1987. 128 с.].

13. Lobatskaya R.M., 2002. The relationship between infrastructure of fault zones and mode of seismicity. In: Tectonics and geophysics of the lithosphere. V. 1. RAS, Moscow, p. 297-301 (in Russian) [Лобацкая Р.М. Связь инфраструктуры разломных зон с характером сейсмичности // Тектоника и геофизика литосферы. Т. 1. Москва: РАН, 2002. С. 297-301].

14. Lobatskaya R.M., Koff G.L., 1987. Fault in the Lithosphere and Emergencies. REFIA, Institute of Lithosphere RAS, Mos¬cow, 187 p. (in Russian) [Лобацкая Р.М., Кофф Г.Л. Разломы литосферы и чрезвычайные ситуации. М.: РЭФИА; Институт литосферы РАН, 1997. 187 с.].

15. Lunina O.V., Gladkov A.S., Nevedrova N.N., 2009. Rift Basins of Pribaikalie: Tectonic Structure and Evolution. GEO Publishing House, Novosibirsk, 316 p. (in Russian) [Лунина О.В., Гладков А.С., Неведрова Н.Н. Рифтовые впадины Прибайкалья: тектоническое строение и история развития. Новосибирск: Академическое изд-во «Гео», 2009. 316 с.].

16. Lunina O.V., Gladkov A.S., Nevedrova N.N., 2010. Tectonics, stress state, and geodynamics of the Mesozoic and Cenozoic rift basins in the Baikal region. Geotectonics 44 (3), 237-261. http://dx.doi.org/10.1134/S0016852110030039.

17. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 102 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизической среды и сейсмический процесс. М.: Наука, 1987. 102 с.].

18. San'kov V.A., 1989. Depths of Fault Penetration. Nauka, SB RAS, Novosibirsk, 105 p. (in Russian) [Саньков В.А. Глубины проникновения разломов. Новосибирск: Наука. СО РАН, 1989. 105 с.].

19. Seminskii K.Zh., 1997. Angle relationships between conjugate joint systems near strike-slip, normal, and thrust fault planes. Doklady Earth Sciences 354 (4), 531-533.

20. Seminskii K.Z., 2008. Hierarchy in the zone-block lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics 49 (10), 771-779. http://dx.doi.org/10.1016/j.rgg.2007.11.017.

21. Seminskii K.Zh., Kogut E.I., 2009. Governing factors in the development of depressions and faults in the Baikal rift zone: Results of a physical experiment. Doklady Earth Sciences 424 (1), 15-18. http://dx.doi.org/10.1134/S1028334X090 10048.

22. Seminskii K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Pota- pov V.V., Burzunova Yu.P., 2012. Interblock zones of the northwestern Baikal rift: results of geological and geophysical studies along the Bayandai Village-Cape Krestovskii profile. Russian Geology and Geophysics 53 (2), 194-208. http://dx.doi.org/10.1016Zj.rgg.2011.12.016.

23. Seminsky K.Zh., 1986a. Analysis of distribution of early fractures during formation of large faults. Geologiya i Geofizika (10), 9-18 (in Russian) [Семинский К.Ж. Анализ распределения опережающих разрывов при формировании крупных дизъюнктивов // Геология и геофизика. 1986а. № 10. С. 9-18].

24. Seminsky K.Zh., 1986b. Structural and Mechanical Properties of Clayey Pastes as Model Material in Tectonic Experiments. No. 5762 (В 86). VINITI, Irkutsk, 130 p. (in Russian) [Семинский К.Ж. Структурно-механические свойства глинистых паст как модельного материала в тектонических экспериментах. Иркутск: ВИНИТИ, 1986б. № 5762 (В 86). 130 с.].

25. Seminsky K.Zh., 1990. General regularities of dynamics of structure formation in large shear zones. Geologiya i Geofizika (4), 14-23 (in Russian) [Семинский К.Ж. Общие закономерности динамики структурообразования в крупных сдвиговых зонах // Геология и геофизика. 1990. № 4. С. 14-23].

26. Seminsky K.Zh., 1991. Space-and-time relationships between tectonic faults in fracturing zones. Geologiya i Geofizika (3), 74-84 (in Russian) [Семинский К.Ж. Пространственно-временные взаимоотношения между тектоническими нарушениями в разрывных зонах // Геология и геофизика. 1991. № 3. С. 74-84].

27. Seminsky K.Zh., 1994. Principles and stages of specialized mapping of fault-block structures based on studies of fracturing. Geologiya i Geofizika (9), 112-130 (in Russian) [Семинский К.Ж. Принципы и этапы спецкартирования разломно- блоковой структуры на основе изучения трещиноватости // Геология и геофизика. 1994. № 9. С. 112-130].

28. Seminsky K.Zh., 2001. Tectonophysical regularities of destruction of the lithosphere as exemplified by the Himalayan compression zone. Tikhookeanskaya Geologiya 20 (6), 17-30 (in Russian) [Семинский К.Ж. Тектонофизические закономерности деструкции литосферы на примере Гималайской зоны сжатия // Тихоокеанская геология. 2001. Т. 20. № 6. С. 17-30].

29. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO Branch, Publishing House of SB RAS, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2003. 244 с.].

30. Seminsky K.Zh., 2009. Major factors of the evolution of basins and faults in the Baikal Rift Zone: Tectonophysical analysis. Geotectonics 43 (6), 486-500. http://dx.doi.org/10.1134/S001685210906003X.

31. Seminsky K.Zh., Bobrov A.A., 2009. Radon activity of faults (western Baikal and southern Angara areas). Russian Geology and Geophysics 50 (8), 682-692. http://dx.doi.org/10.1016/j.rgg.2008.12.010.

32. Seminsky K.Zh., Bobrov A.A., 2012. Spatial and temporal variations of soil-radon activity in fault zones of the Pribaikalie (East Siberia, Russia). In: Z. Li, C. Feng (Eds.), Handbook of radon: properties, applications and health. Nova Sci. Publ. Inc., New York, Chapter 1, p. 1-36.

33. Seminsky K.Zh., Bobrov A.A., 2013. The first results of studies of temporary variations in soil-radon activity of faults in Western Pribaikalie. Geodynamics & Tectonophysics 4 (1), 1-12. http://dx.doi.org/10.5800/GT-2013-4-1-0088.

34. Seminsky K.Zh., Gladkov A.S., 1991. The new approach to studies of tectonic fracturing in fault zones. Geologiya i Geofizika (5), 130-140 (in Russian) [Семинский К.Ж., Гладков А.С. Новый подход к изучению тектонической трещиноватости в разрывных зонах // Геология и геофизика. 1991. № 5. С. 130-140].

35. Seminsky K.Zh., Gladkov A.S., Lunina O.V., Tugarina M.A., 2005. The Internal Structure of Continental Fault Zones. Applied Aspect. Novosibirsk: GEO Branch, Publishing House of SB RAS, Novosibirsk, 294 p. (in Russian) [Семинский К.Ж., Гладков А.С., Лунина О.В., Тугарина М.А. Внутренняя структура континентальных разломных зон. Прикладной аспект. Новосибирск: Изд-во СО РАН, филиал «Гео», 2005. 294 с.].

36. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A.S. 2013. Interblock zones in the crust of the southern regions of East Siberia: tectonophysical interpretation of geological and geophysical data. Geodynamics and Tectonophysics 4 (3), 203-278. http://dx.doi.org/10.5800/GT-2013-4-3-0099.

37. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka Publishing House of SB RAS, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука. СО, 1977. 102 с.].

38. Sherman S.I., 1978. Faults of the Baikal rift zone. Tectonophysics 45 (1), 31-39. http://dx.doi.org/10.1016/0040-1951(78) 90221-4.

39. Sherman S.I., 1984. Physical experiment in tectonics and the theory of similarity. Geologiya i Geofizika (3), 8-18 (in Russian) [Шерман С.И. Физический эксперимент в тектонике и теория подобия // Геология и геофизика. 1984. № 3. С. 8-18].

40. Sherman S.I., 1992. Faults and tectonic stresses of the Baikal rift zone. Tectonophysics. 208 (1-3), 297-307. http://dx.doi.org/ 10.1016/0040-1951(92)90351-6.

41. Sherman S.I., 1996. Faulting in zones of lithospheric extension: quantitative analysis of natural and experimental data // Pure and Applied Geophysics 146 (3-4), 421-446. http://dx.doi.org/10.1007/BF00874728.

42. Sherman S.I., 2005. The East Siberian Scientific Tectonophysical School. Vestnik, Irkutsk State Technical University (2), 11-24 (in Russian) [Шерман С.И. Восточно-Сибирская научная тектонофизическая школа // Вестник иркутского государственного технического университета. 2005. № 2. С. 11-24].

43. Sherman S.I., 2009. Tectonophysics and related sciences: seismology. In: Tectonophysics and top issues of Earth Sciences. Proceedings of the All-Russia Conference. UIFE RAS, Moscow, V. 1, p. 112-132 (in Russian) [Шерман С.И. Тектоно- физика и смежные науки: сейсмология // Тектонофизика и актуальные вопросы наук о Земле: Материалы Все¬российской конференции. М.: ОИФЗ РАН, 2009. Т. 1. С. 112-132].

44. Sherman S.I., 2012. Destruction of the lithosphere: Fault-block divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics 3 (4), 315-344. http://dx.doi.org/10.5800/GT-2012-3-4-0077.

45. Sherman S.I., 2013. Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2), 83-117. http://dx.doi.org/10.5800/GT-2013-4-2-0093.

46. Sherman S.I., Adamovich A.N., Miroshnichenko A.I., 1993. Assessment of potential seismotectonic activity of the region of the Spitak earthquake from modelling results. Geoekologiya (2), 66-78 (in Russian) [Шерман С.И., Адамович А.Н., Мирошниченко А.И. Оценка потенциальной сейсмотектонической активности района Спитакского землетрясения по результатам моделирования // Геоэкология. 1993. № 2. С. 66-78].

47. Sherman S.I., Babichev A.A., 1989. The theory of similarity in application to tectonic modelling. In: Experimental tectonics. methods, results, and prospect. Nauka, Moscow, p. 57-77 (in Russian) [Шерман С.И., Бабичев А.А. Теория подобия и размерностей в приложении к тектоническому моделированию // Экспериментальная тектоника. Методы, результаты, перспектива. М.: Наука, 1989. С. 57-77].

48. Sherman S.I., Berzhinsky Yu.A., Pavlenov V.A., Aptikaev F.F., 2003. Regional Scales of Seismic Intensity. GEO Branch, Publishing House of SB RAS, Novosibirsk, 189 p. (in Russian) [Шерман С.И., Бержинский Ю.А., Павленов В.А., Аптикаев Ф.Ф. Региональные шкалы сейсмической интенсивности. Новосибирск, Изд-во СО РАН, филиал «ГЕО», 2003. 189 с.].

49. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults. Nauka, Novosibirsk, 112 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов. Новосибирск: Наука, 1983. 112 с.].

50. Sherman S.I., Bornyakov S.A., Buddo V.Yu. et al., 1985. Modelling of the mechanism of formation of seismically active faults in the elasto-plastic medium. Geologiya i Geofizika (10), 9-18 (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю.

51. и др. Моделирование механизма образования сейсмоактивных разломов в упруговязкой среде // Геология и геофизика. 1985. № 10. С. 9-18].

52. Sherman S.I., Cheremnykh A.V., Miroshnichenko A.I., 2005. New data on stress field structure in the Baikal rift system: modeling results. Doklady Earth Sciences 401 (2), 249-252.

53. Sherman S.I., Dem'yanovich V.M., Lysak S.V., 2002. New data on recent destruction of lithosphere in the Baikal rift zone. Doklady Earth Sciences 387A (9), 1067-1070.

54. Sherman S.I., Dem'yanovich V.M., Lysak S.V., 2004a. Active faults, seismicity and fracturing in the lithosphere of the Baikal rift system. Tectonophysics 380 (3-4), 261-272. http://dx.doi.org/10.1016/j.tecto.2003.09.023.

55. Sherman S.I., Dem'yanovich V.M., Lysak S.V., 2004b. Seismic process and active lithospheric failure in the Baikal rift system. Geologiya i Geofizika (Russian Geology and Geophysics) 45 (12), 1458-1470.

56. Sherman S.I., Dneprovsky Yu.I., 1989a. Crustal Stress Fields and Geological and Structural Methods of Their Studies. Nauka, Novosibirsk, 157 p. (in Russian) [Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геолого- структурные методы их изучения. Новосибирск: Наука, 1989а. 157 с.].

57. Sherman S.I., Dneprovsky Yu.I., 1989b. Tectonic stress fields in the Baikal rift zone // Geotectonics (2), 101-112 (in Russian) [Шерман С.И., Днепровский Ю.И. Поля тектонических напряжений в Байкальской рифтовой зоне // Геотектоника. 1989б. № 2. С. 101-112].

58. Sherman S.I., Gladkov A.S., 1999. Fractals in studies of faulting and seismicity in the Baikal rift zone. Tectonophysics 308 (1-2), 133-142. http://dx.doi.org/10.1016/S0040-1951(99)00083-9.

59. Sherman S.I., Gorbunova E.A. 2008a. Wave origin of fault activation in the Central Asia on the basis of seismic monitoring. Fizicheskaya Mezomekhanika 11 (1), 115-122 (in Russian) [Шерман С.И., Горбунова Е.А. Волновая природа активизации разломов Центральной Азии на базе сейсмического мониторинга // Физическая мезомеханика. 2008. Т. 11. № 1. С. 115-122].

60. Sherman S.I., Gorbunova E.A., 2008b. Variation and origin of fault activity of the Baikal rift system and adjacent territories in real time. Earth Science Frontiers 15 (3), 337-347. http://dx.doi.org/10.1016/S1872-5791(08)60069-X.

61. Sherman S.I., Lunina O.V., 2001. A New map representing stressed state of the upper part of the Earth's lithosphere. Doklady Earth Sciences 379 (5), 553-555.

62. Sherman S.I., Ma Jing, Dem'yanovich V.M., Guo Yanshuan, 2014. New data on tectonophysical regularities of epicentral and hypocentral fields of earthquakes in rift systems of Central Asia. Doklady Earth Sciences 456 (6) (in press) (in Russian) [Шерман С.И., Ма Дзинь, Демьянович В.М., Гуо Яншуанг. Новые данные о тектонофизических закономерностях эпицентральных и гипоцентральных полей землетрясений рифтовых систем Центральной Азии. Доклады АН. 2014. Т. 456. № 6 (в печати)].

63. Sherman S.I., Pleshanov S.P., 1980. The method of belts in studies of near-fault fracturing. In: Geology, prospecting and exploration of ore mineral reserves. Irkutsk Polytechnical Institute, Irkutsk, p. 8-20 (in Russian) [Шерман С.И., Плешанов С. П. Метод поясов в исследовании приразломной трещиноватости // Геология, поиски и разведка месторождений рудных полезных ископаемых. Иркутск: Иркутский политехнический институт, 1980. С. 8-20].

64. Sherman S.I., Savitsky V.A., 2006. New data on quasi-periodical regularities in activation of fractures in real time based on monitoring of magnitudes of seismic events: Case study of the Baikal rift system. Doklady Earth Sciences 408 (1), 640-644. http://dx.doi.org/10.1134/S1028334X06040295.

65. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Buddo V.Yu., 1994. Faulting in the Lithosphere. Compresson Zones. Nauka, Siberian Branch, Novosibirsk, 263 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Адамович А.Н., Буддо В.Ю. Разломообразование в литосфере. Зоны сжатия. Новосибирск: Наука. СО, 1994. 263 с.].

66. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Gladkov A.S., 2000. Theoretical and practical development of M.V. Gzovsky's ideas in studies of the Institute of the Earth's Crust, SB RAS. In: Yu.G. Leonov, V.N. Strakhov (Eds), M.V. Gzovsky and development of tectonophysics. Nauka, Moscow, p. 245-265 (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Адамович А.Н., Гладков А.С. Теоретические и практические следствия развития идей М.В. Гзовского в исследованиях Института земной коры СО РАН // М.В. Гзовский и развитие тектонофизики / Отв. ред. Ю.Г. Леонов, В.Н. Страхов. М.: Наука, 2000. С. 245-265].

67. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Lobatskaya R.M., Lysak S.V., Levi K.G., 1992. Faulting in the Lithosphere. Extension Zones. Nauka, Siberian Branch, Novosibirsk, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Адамович А.Н., Лобацкая Р.М., Лысак С.В., Леви К.Г. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука. СО, 1992. 262 с.].

68. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Siberian Branch, Novosibirsk, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. СО, 1991. 261 с.].

69. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 1999. Destructive zones and fault-block structure of Central Asia. Tikhookeanskaya Geologiya 18 (2), 41-53 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Деструктивные зоны и и разломно­блоковые структуры Центральной Азии // Тихоокеанская геология. 1999. Т. 18. № 2. С. 41–53].

70. Sherman S.I., Seminsky K.Zh., Gladkov A.S., Adamovich A.N., Kuz'min S.B., 1996. Experiences of application of tectonophysical analysis to assessment of tectonic activity and seismic hazard in the region of the Sayano¬Shushenskaya Hydro-Power Station, East Sayan. Geologiya i Geofizika (5), 89–96 (in Russian) [Шерман С.И., Семинский К.Ж., Гладков А.С., Адамович А.Н., Кузьмин С.Б. Опыт применения тектонофизического анализа при оценке тектонической активности и сейсмической опасности района Саяно-Шушенской ГЭС (Западный Саян) // Геология и геофизика. 1996. № 5. С. 89–96].

71. Sherman S.I., Tsurkan E.A., 2006. Slow deformation waves as a source and trigger mechanism of recent activation of faults in Central Asia. In: Geodynamic evolution of the lithosphere in the Central Asian mobile belt. Proceedings of the Conference, Issue 4, Vol. 2. IEC SB RAS, Irkutsk, p. 219–223 (in Russian) [Шерман С.И., Цуркан Е.А. Медленные деформационные волны как источник и триггерный механизм современной активизации разломов Центральной Азии // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: Материалы совещания. Вып. 4. Иркутск: ИЗК СО РАН, 2006. Т. 2. С. 219–223].

72. Zuev L.B., Danilov V.I., Barannikova S.A., 2008. Physics of Macrolocation of Plastic Flow. Nauka, Novosibirsk, 328 p. (in Russian) [Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск: Наука, 2008. 328 с.].


Review

For citations:


Sherman S.I., Seminsky K.Zh., Bornyakov  S.A. FAULTING IN THE LITHOSPHERE: THE 35TH ANNIVERSARY OF THE IRKUTSK SCHOOL OF TECTONOPHYSICS. Geodynamics & Tectonophysics. 2014;5(2):329–352. (In Russ.) https://doi.org/10.5800/GT-2014-5-2-0132

Views: 1458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)