Preview

Geodynamics & Tectonophysics

Advanced search

FOREARC MANTLE METASOMATISM BY 11B-DEPLETED FLUIDS FROM A HIGHLY DEHYDRATED SLAB: A SNAPSHOT OF SLAB ROLL-BACK?

https://doi.org/10.5800/GT-2017-8-3-0308

Abstract

Accretionary orogens form along convergent plate margins due to the ongoing subduction of oceanic lithosphere, and comprise accretionary prisms, magmatic arcs, back-arc domains, ophiolitic mélanges and possibly oceanic plateaus and continental fragments [Condie, 2007; Cawood et al., 2009]. Based on the dips and velocities of subducting slabs, accretionary orogens can be divided into retreating and advancing type, as exemplified by modern SW Pacific and Andes, respectively [Royden, 1993; Cawood et al., 2009].

About the Authors

Yunying Zhang
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
China

State Key Laboratory of Isotope Geochemistry,

Guangzhou 510640



Chao Yuan
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
China

State Key Laboratory of Isotope Geochemistry, 

Guangzhou 510640



Min Sun
The University of Hong Kong
China

Department of Earth Sciences, 

Pokfulam Road, Hong Kong



Xiaoping Long
Northwest University
China

State Key Laboratory of Continental Dynamics, Department of Geology,

Northern Taibai Str. 229, Xi’an 710069



Yingde Jiang
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
China

State Key Laboratory of Isotope Geochemistry, 

Guangzhou 510640



Pengfei Li
Northwest University
China

State Key Laboratory of Continental Dynamics, Department of Geology, 

Northern Taibai Str. 229, Xi’an 710069



References

1. Cawood P.A., Kröner A., Collins W.J., Kusky T.M., Mooney W.D., Windley B.F., 2009. Accretionary orogens through Earth history. In: Cawood, A. Kröner (Eds.), Earth accretionary systems in space and time. Geological Society, London, Special Publications, vol. 318, p. 1–36. https://doi.org/10.1144/SP318.1.

2. Chaussidon M., Marty B., 1995. Primitive boron isotope composition of the mantle. Science 269 (5222), 383–386. https://doi.org/10.1126/science.269.5222.383.

3. Condie K.C., 2007. Accretionary orogens in space and time. In: R.D. Hatcher Jr., M.P. Carlson, J.H. McBride, J.R. Martínez Catalán (Eds), 4-D framework of continental crust. Geological Society of America Memoirs, vol. 200, p. 145–158. https://doi.org/10.1130/2007.1200(09).

4. Royden L.H., 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics 12 (2), 303–325. https://doi.org/10.1029/92TC02248.

5. Şengör A.M.C., Natal’in B.A., Burtman V.S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364 (6435), 299–307. https://doi.org/10.1038/364299a0.

6. Windley B.F., Alexeiev D., Xiao W.J., Kröner A., Badarch G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164 (1), 31–47. https://doi.org/10.1144/0016-76492006-022.

7. Xiao W.J., Zhang L.C., Qin K.Z., Sun S., Li J.L., 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. American Journal of Science 304 (4), 370–395. https://doi.org/10.2475/ajs.304.4.370.


Review

For citations:


Zhang Yu., Yuan Ch., Sun M., Long X., Jiang Y., Li P. FOREARC MANTLE METASOMATISM BY 11B-DEPLETED FLUIDS FROM A HIGHLY DEHYDRATED SLAB: A SNAPSHOT OF SLAB ROLL-BACK? Geodynamics & Tectonophysics. 2017;8(3):615-617. https://doi.org/10.5800/GT-2017-8-3-0308

Views: 840


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)